ترغب بنشر مسار تعليمي؟ اضغط هنا

T CrB: Radio Observations During the 2016--2017 Super-Active State

439   0   0.0 ( 0 )
 نشر من قبل Justin Linford
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Justin D. Linford




اسأل ChatGPT حول البحث

We obtained radio observations of the symbiotic binary and known recurrent nova T Coronae Borealis following a period of increased activity in the optical and X-ray bands. A comparison of our observations with those made prior to 2015 indicates that the system is in a state of higher emission in the radio as well. The spectral energy distributions are consistent with optically thick thermal bremsstrahlung emission from a photoionized source. Our observations indicate that the system was in a state of increased ionization in the companion wind, possibly driven by an increase in accretion rate, with the radio photosphere located well outside the binary system.

قيم البحث

اقرأ أيضاً

We present an analysis of the XMM-Newton observations of the symbiotic recurrent nova T CrB, obtained during its active phase that started in 2015. The XMM-Newton spectra of T CrB have two prominent components: a soft one (0.2 - 0.6 keV), well repres ented by black-body emission, and a heavily absorbed hard component (2 - 10 keV), well matched by optically-thin plasma emission with high temperature (kT ~ 8 keV). The XMM-Newton observations reveal evolution of the X-ray emission from T CrB in its active phase. Namely, the soft component in its spectrum is decreasing with time while the opposite is true for the hard component. Comparison with data obtained in the quiescent phase shows that the soft component is typical only for the active phase, while the hard component is present in both phases but it is considerably stronger in the quiescent phase. Presence of stochastic variability (flickering) on time-scales of minutes and hours is confirmed both in X-rays and UV (UVM2 filter of the XMM-Newton optical monitor). On the other hand, periodic variability of 6000-6500 s is found for the first time in the soft X-ray emission (0.2 - 0.6 keV) from T CrB. We associate this periodic variability with the rotational period of the white dwarf in this symbiotic binary.
Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to shed light on the crucial physical processes giving rise to the jet formation, as well as to its extraordinary radiation output up to gamma-ray energies. We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm-VLBI polarimetric observations, reaching an unprecedented resolution (~50 microarcsec). We also investigate the variability and physical process occurring in the source during the observing period which coincides with a very active state of the source till high-energies. The Faraday rotation analysis between 3 and 7mm shows a gradient in rotation measure with a maximum value of ~6X10^4 rad/m^2 and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7mm EVPAs orientation is different when the component is exiting the core or crossing a stationary feature at ~0.1 mas. The interaction between the superluminal component and a recollimation shock at ~0.1 mas could have triggered the multi-wavelengths flares. The variability Doppler factor associated with such interaction is large enough to explain the high energy emission, as we infer from the analysis of gamma-ray and X-ray data, and it is in agreement with the Doppler factor obtained to explain the extraordinary optical flare by Raiteri et al.(2017).
We present the first ever X-ray data taken of an intermediate polar, FO Aqr, when in a low accretion state and during the subsequent recovery. The Swift and Chandra X-ray data taken during the low accretion state in July 2016 both show a softer spect rum when compared to archival data taken when FO Aqr was in a high state. The X-ray spectrum in the low state showed a significant increase in the ratio of the soft X-ray flux to the hard X-ray flux due to a change in the partial covering fraction of the white dwarf from $>85%$ to $70^{+5}_{-8}%$ and a change in the hydrogen column density within the disc from 19$^{+1.2}_{-0.9}times 10^{22}$ cm$^{-2}$ to 1.3$^{+0.6}_{-0.3}times 10^{22}$ cm$^{-2}$. XMM-Newton observations of FO Aqr during the subsequent recovery suggest that the system had not yet returned to its typical high state by November 2016, with the hydrogen column density within the disc found to be 15$^{+3.0}_{-2.0}$ cm$^{-2}$. The partial covering fraction varied in the recovery state between $85%$ and $95%$. The spin period of the white dwarf in 2014 and 2015 has also been refined to 1254.3342(8) s. Finally, we find an apparent phase difference between the high state X-ray pulse and recovery X-ray pulse of 0.17, which may be related to a restructuring of the X-ray emitting regions within the system.
191 - G. J. M. Luna 2019
The current $super-active$ state of the recurrent nova T CrB has been observed with unprecedented detail. Previously published observations provide strong evidence that this state is due to an enhancement of the flow of material through the accretion disk, which increased the optical depth of its most internal region, the boundary layer. $NuSTAR$ and $Swift$ observed T CrB in 2015 September, roughly halfway through the rise to optical maximum. In our analysis of these data, we have found that: $i$) the UV emission, as observed with $Swift$/UVOT in 2015, was already as bright as it became in 2017, after the optical peak; $ii$) the soft X-ray emission (E $lesssim$ 0.6 keV) observed in 2017 after the optical peak, on the other hand, had not yet developed during the rising phase in 2015; $iii$) the hard X-ray emitting plasma (E $gtrsim$ 2 keV) had the same temperature and about half the flux of that observed during quiescence in 2006. This phenomenology is akin to that observed during dwarf novae in outburst, but with the changes in the spectral energy distribution happening on a far longer time scale.
The Flat Spectrum Radio Quasar 3C 279 has been very active since a few years with multiple flaring events occurring at high energies. As part of the H.E.S.S. Target of Opportunity program, 3C 279 was observed multiple times in 2017 and 2018 following high states in optical (February and March 2017) or at high energies as seen with Fermi-LAT (June 2017, January, February and June 2018). While in January 2018 H.E.S.S. detected an unexpected very high energy (VHE) flare at the end of the MeV-GeV flaring state, in June 2018 it was possible to follow almost continuously the decaying part of a strong Fermi-LAT flare, observing with the full array for several nights after the peak of the GeV gamma-ray emission. This has lead to the detection of the source with very high significance. We present here the temporal and spectral results of the H.E.S.S. II dataset together with an overview of the strong multi-wavelength activity seen from 3C 279 between 2017 and 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا