ﻻ يوجد ملخص باللغة العربية
The current $super-active$ state of the recurrent nova T CrB has been observed with unprecedented detail. Previously published observations provide strong evidence that this state is due to an enhancement of the flow of material through the accretion disk, which increased the optical depth of its most internal region, the boundary layer. $NuSTAR$ and $Swift$ observed T CrB in 2015 September, roughly halfway through the rise to optical maximum. In our analysis of these data, we have found that: $i$) the UV emission, as observed with $Swift$/UVOT in 2015, was already as bright as it became in 2017, after the optical peak; $ii$) the soft X-ray emission (E $lesssim$ 0.6 keV) observed in 2017 after the optical peak, on the other hand, had not yet developed during the rising phase in 2015; $iii$) the hard X-ray emitting plasma (E $gtrsim$ 2 keV) had the same temperature and about half the flux of that observed during quiescence in 2006. This phenomenology is akin to that observed during dwarf novae in outburst, but with the changes in the spectral energy distribution happening on a far longer time scale.
We obtained radio observations of the symbiotic binary and known recurrent nova T Coronae Borealis following a period of increased activity in the optical and X-ray bands. A comparison of our observations with those made prior to 2015 indicates that
A sudden increase in the rate at which material reaches the most internal part of an accretion disk, i.e. the boundary layer, can change its structure dramatically. We have witnessed such change for the first time in the symbiotic recurrent nova T Cr
We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the Solar Dynamic Observatorys Atmospheric Imaging
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June
Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly ob