ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic field structure in CTA 102 from high resolution mm-VLBI observations during the flaring state in 2016-2017

402   0   0.0 ( 0 )
 نشر من قبل Carolina Casadio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to shed light on the crucial physical processes giving rise to the jet formation, as well as to its extraordinary radiation output up to gamma-ray energies. We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm-VLBI polarimetric observations, reaching an unprecedented resolution (~50 microarcsec). We also investigate the variability and physical process occurring in the source during the observing period which coincides with a very active state of the source till high-energies. The Faraday rotation analysis between 3 and 7mm shows a gradient in rotation measure with a maximum value of ~6X10^4 rad/m^2 and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7mm EVPAs orientation is different when the component is exiting the core or crossing a stationary feature at ~0.1 mas. The interaction between the superluminal component and a recollimation shock at ~0.1 mas could have triggered the multi-wavelengths flares. The variability Doppler factor associated with such interaction is large enough to explain the high energy emission, as we infer from the analysis of gamma-ray and X-ray data, and it is in agreement with the Doppler factor obtained to explain the extraordinary optical flare by Raiteri et al.(2017).

قيم البحث

اقرأ أيضاً

In late 2016 and early 2017 the flat spectrum radio quasar CTA 102 exhibited a very strong and long-lasting outburst. The event can be described by a roughly 2 months long increase of the baseline flux in the monitored energy bands (optical to $gamma $ rays) by a factor 8, and a subsequent decrease over another 2 months back to pre-flare levels. The long-term trend was superseded by short but very strong flares, resulting in a peak flux that was a factor 50 above pre-flare levels in the $gamma$-ray domain and almost a factor 100 above pre-flare levels in the optical domain. In this paper we explain the long-term evolution of the outburst by the ablation of a gas cloud penetrating the relativistic jet. The slice-by-slice ablation results in a gradual increase of the particle injection until the center of the cloud is reached, after which the injected number of particles decreases again. With reasonable cloud parameters we obtain excellent fits of the long-term trend.
438 - Justin D. Linford 2019
We obtained radio observations of the symbiotic binary and known recurrent nova T Coronae Borealis following a period of increased activity in the optical and X-ray bands. A comparison of our observations with those made prior to 2015 indicates that the system is in a state of higher emission in the radio as well. The spectral energy distributions are consistent with optically thick thermal bremsstrahlung emission from a photoionized source. Our observations indicate that the system was in a state of increased ionization in the companion wind, possibly driven by an increase in accretion rate, with the radio photosphere located well outside the binary system.
We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from th e Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi ($gamma$ rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented $gamma$-ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 $pm$ 63)$times$10$^{-8}$ ph cm$^{-2}$ s$^{-1}$, corresponding to a luminosity of (2.2 $pm$ 0.1)$times$10$^{50}$ erg s$^{-1}$, was reached on 2016 December 28. These four $gamma$-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and $gamma$-ray activity is found. The $gamma$-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This $gamma$-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.
The flat spectrum radio quasar CTA 102 (redshift 1.037) exhibited a tremendously bright 4-months long outburst from late 2016 to early 2017. In a previous paper, we interpreted the event as the ablation of a gas cloud by the relativistic jet. The mul tiwavelength data have been reproduced very well within this model using a leptonic emission scenario. Here we expand that work by using a hadronic scenario, which gives us greater freedom with respect to the location of the emission region within the jet. This is important, since the inferred gas cloud parameters depend on the distance from the black hole. While the hadronic model faces the problem of invoking super-Eddington jet luminosities, it reproduces well the long-term trend and also days-long subflares. While the latter result in inferred cloud parameters that match those expected for clouds of the broad-line region, the long-term trend is not compatible with such an interpretation. We explore the possibilities that the cloud is from the atmosphere of a red giant star or comes from a star-forming region that passes through the jet. The latter could also explain the much longer-lasting activity phase of CTA 102 from late 2015 till early 2018.
The Flat Spectrum Radio Quasar 3C 279 has been very active since a few years with multiple flaring events occurring at high energies. As part of the H.E.S.S. Target of Opportunity program, 3C 279 was observed multiple times in 2017 and 2018 following high states in optical (February and March 2017) or at high energies as seen with Fermi-LAT (June 2017, January, February and June 2018). While in January 2018 H.E.S.S. detected an unexpected very high energy (VHE) flare at the end of the MeV-GeV flaring state, in June 2018 it was possible to follow almost continuously the decaying part of a strong Fermi-LAT flare, observing with the full array for several nights after the peak of the GeV gamma-ray emission. This has lead to the detection of the source with very high significance. We present here the temporal and spectral results of the H.E.S.S. II dataset together with an overview of the strong multi-wavelength activity seen from 3C 279 between 2017 and 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا