ترغب بنشر مسار تعليمي؟ اضغط هنا

Schwinger Pair Production in dS_2 and AdS_2

161   0   0.0 ( 0 )
 نشر من قبل Sang Pyo Kim
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Sang Pyo Kim




اسأل ChatGPT حول البحث

We study Schwinger pair production in scalar QED from a uniform electric field in dS_2 with scalar curvature R_{dS} = 2 H^2 and in AdS_2 with R_{AdS} = - 2 K^2. With suitable boundary conditions, we find that the pair-production rate is the same analytic function of the scalar curvature in both cases.

قيم البحث

اقرأ أيضاً

232 - Sang Pyo Kim 2011
We study the time-dependent solitonic gauge fields in scalar QED, in which a charged particle has the energy of reflectionless P{o}sch-Teller potential with natural quantum numbers. Solving the quantum master equation for quadratic correlation functi ons, we find the exact pair-production rates as polynomials of inverse square of hyperbolic cosine, which exhibit solitonic characteristics of a finite total pair production per unit volume and a non-oscillatory behavior for the entire period, and an exponentially decaying factor in asymptotic regions. It is shown that the solitonic gauge fields are the simplest solutions of the quantum master equation and that the back-reaction of the produced pairs does not destabilize the solitonic gauge fields.
145 - Sang Pyo Kim 2008
Some astrophysical objects are supposed to have very strong electromagnetic fields above the critical strength. Quantum fluctuations due to strong electromagnetic fields modify the Maxwell theory and particularly electric fields make the vacuum unsta ble against pair production of charged particles. We study the strong field effect such as the effective action and the Schwinger pair production in scalar QED.
76 - Sang Pyo Kim , Hyun Kyu Lee , 2009
We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production and the stimulated annihilation from the initial ensemble. It is shown that the pair-production rate for each state is factorized into the mean number at zero temperature and the initial thermal distribution for bosons and fermions.
Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. H ere, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a detector particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detectors rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.
87 - Sang Pyo Kim 2007
In scalar QED we study the Schwinger pair production from an initial ensemble of charged bosons when an electric field is turned on for a finite period together with or without a constant magnetic field. The scalar QED Hamiltonian depends on time thr ough the electric field, which causes the initial ensemble of bosons to evolve out of equilibrium. Using the Liouville-von Neumann method for the density operator and quantum states for each momentum mode, we calculate the Schwinger pair-production rate at finite temperature, which is the pair-production rate from the vacuum times a thermal factor of the Bose-Einstein distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا