ﻻ يوجد ملخص باللغة العربية
We study Schwinger pair production in scalar QED from a uniform electric field in dS_2 with scalar curvature R_{dS} = 2 H^2 and in AdS_2 with R_{AdS} = - 2 K^2. With suitable boundary conditions, we find that the pair-production rate is the same analytic function of the scalar curvature in both cases.
We study the time-dependent solitonic gauge fields in scalar QED, in which a charged particle has the energy of reflectionless P{o}sch-Teller potential with natural quantum numbers. Solving the quantum master equation for quadratic correlation functi
Some astrophysical objects are supposed to have very strong electromagnetic fields above the critical strength. Quantum fluctuations due to strong electromagnetic fields modify the Maxwell theory and particularly electric fields make the vacuum unsta
We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production and the stimulated annihilation from the initial ensemble. It is
Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. H
In scalar QED we study the Schwinger pair production from an initial ensemble of charged bosons when an electric field is turned on for a finite period together with or without a constant magnetic field. The scalar QED Hamiltonian depends on time thr