ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetics of Pfaffian-AntiPfaffian Domains

324   0   0.0 ( 0 )
 نشر من قبل Steven Simon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In several recent works it has been proposed that, due to disorder, the experimentally observed nu=5/2 quantum Hall state could be microscopically composed of domains of Pfaffian order along with domains of AntiPfaffian order. We numerically examine the energetics required for forming such domains and conclude that for the parameters appropriate for recent experiments, such domains would not occur.

قيم البحث

اقرأ أيضاً

We calculate the electron spectral functions at the edges of the Moore-Read Pfaffian and anti-Pfaffian fractional quantum Hall states, in the clean limit. We show that their qualitative differences can be probed using momentum resolved tunneling, thu s providing a method to unambiguously distinguish which one is realized in the fractional quantum Hall state observed at filling factor $ u=5/2$. We further argue that edge reconstruction, which may be less important in the first excited Landau level (LL) than in the lowest LL, can also be detected this way if present.
69 - Chen Sun , Ken K. W. Ma , 2020
The PH-Pfaffian topological order has been proposed as a candidate order for the $ u=5/2$ quantum Hall effect. The PH-Pfaffian liquid is known to be the ground state in several coupled wire and coupled stripe constructions. No translationally and rot ationally invariant models with the PH-Pfaffian ground state have been identified so far. By employing anyon condensation on top of a topological order, allowed in an isotropic system, we argue that the PH-Pfaffian order is possible in the presence of rotational and translational symmetries.
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are character ized by non-Abelian statistics of their quasiparticles. Here we focus on conditions for their realization and competition among them at half-integer filling factors. Using the Dirac composite fermion description, in the presence of a mass term, we study the influence of Landau level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are selected when Landau level mixing is not strong, and can be taken into account perturbatively, the PH Pfaffian state requires non-perturbative inclusion of at least two Landau levels. Our findings, for small Landau level mixing, are in accordance with numerical investigations in the literature, and call for a non-perturbative approach in the search for PH Pfaffian correlations. We demonstrated that a method based on the Chern-Simons field-theoretical approach can be used to generate characteristic interaction pseudo-potentials for Pfaffian paired states.
129 - H. Saarikoski , E. Tolo , A. Harju 2008
When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum H all effect with a quantized conductivity at an unusual half-integer nu=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragmentation of charge and spin densities into incompressible domains. The fragmentation of the quantum Hall states could be an issue in the proposed experiments that aim to probe for non-abelian quasi-particle characteristics of the nu=5/2 quantum Hall state.
MnAs films grown on GaAs (001) exhibit a progressive transition between hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide temperature range instead of abrupt transition during the first-order phase transition. The coexistence o f two phases is favored by the anisotropic strain arising from the constraint on the MnAs films imposed by the substrate. This phase coexistence occurs in ordered arrangement alternating periodic terrace steps. We present here a method to study the surface morphology throughout this transition by means of specular and diffuse scattering of soft x-rays, tuning the photon energy at the Mn 2p resonance. The results show the long-range arrangement of the periodic stripe-like structure during the phase coexistence and its period remains constant, in agreement with previous results using other techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا