ﻻ يوجد ملخص باللغة العربية
CEA is committed to the design, construction and commissioning of a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The Low Level RF (LLRF) is a subsystem of the CEA control domain for the SARAF-LINAC instrumentation. The top level requirement of the LLRF system has been presented in the last LLRF conference. The paper shows a simulink model to analyse and determinate the LLRF technical specification. The public bidding for SARAF LLRF is in the last phase: discussion with the selected company. The first prototype test will be performed at the start of 2020.
At the Ibaraki Neutron Medical Research Center, an accelerator-based neutron source for iBNCT (Ibaraki - Boron Neutron Capture Therapy) is being developed using an 8-MeV proton linac and a beryllium-based neutron production target. The proton linac c
First beam commissioning of SuperKEKB (Phase-1), which is an asymmetry double ring collider of 7-GeV electron and 4-GeV positron beams, which had started from February, has been successfully accomplished at the end of June 2016, and the desired beam
Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of
PAL-XFEL (Pohang Accelerator Laboratory X-ray Free Electron Laser) started RF conditioning in October 2015 and has been operating reliably for ~ 4 years. The machines LLRF and SSA systems contributed to the stable operation of PAL-XFEL with over 99%
The European Spallation Source (ESS) accelerator is composed of superconducting elliptical cavities. When the facility is running, the cavities are fed with electrical field from klystrons. Parameters of this field are monitored and controlled by the