ﻻ يوجد ملخص باللغة العربية
We study operations of a battery energy storage system under a baseline-based demand response (DR) program with an uncertain schedule of DR events. Baseline-based DR programs may provide undesired incentives to inflate baseline consumption in non-event days, in order to increase apparent DR reduction in event days and secure higher DR payments. Our goal is to identify and quantify such incentives. To understand customer decisions, we formulate the problem of determining hourly battery charging and discharge schedules to minimize expected net costs, defined as energy purchase costs minus energy export rebates and DR payments, over a sufficiently long time horizon (e.g., a year). The complexity of this stochastic optimization problem grows exponentially with the time horizon considered. To obtain computationally tractable solutions, we propose using multistage model predictive control with scenario sampling. Numerical results indicate that our solutions are near optimal (e.g., within 3% from the optimum in the test cases). Finally, we apply our solutions to study an example residential customer with solar photovoltaic and battery systems participating in a typical existing baseline-based DR program. Results reveal that over 66% of the average apparent load reduction during DR events could result from inflation of baseline consumption during non-event days.
The rapidly growing use of lithium-ion batteries across various industries highlights the pressing issue of optimal charging control, as charging plays a crucial role in the health, safety and life of batteries. The literature increasingly adopts mod
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of
Off-grid systems have emerged as a sustainable and cost-effective solution for rural electrification. In sub-Sarahan Africa (SSA), a great number of solar-hybrid microgrids have been installed or planned, operating stand-alone or grid-tied to a weak
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo