ﻻ يوجد ملخص باللغة العربية
The rapidly growing use of lithium-ion batteries across various industries highlights the pressing issue of optimal charging control, as charging plays a crucial role in the health, safety and life of batteries. The literature increasingly adopts model predictive control (MPC) to address this issue, taking advantage of its capability of performing optimization under constraints. However, the computationally complex online constrained optimization intrinsic to MPC often hinders real-time implementation. This paper is thus proposed to develop a framework for real-time charging control based on explicit MPC (eMPC), exploiting its advantage in characterizing an explicit solution to an MPC problem, to enable real-time charging control. The study begins with the formulation of MPC charging based on a nonlinear equivalent circuit model. Then, multi-segment linearization is conducted to the original model, and applying the eMPC design to the obtained linear models leads to a charging control algorithm. The proposed algorithm shifts the constrained optimization to offline by precomputing explicit solutions to the charging problem and expressing the charging law as piecewise affine functions. This drastically reduces not only the online computational costs in the control run but also the difficulty of coding. Extensive numerical simulation and experimental results verify the effectiveness of the proposed eMPC charging control framework and algorithm. The research results can potentially meet the needs for real-time battery management running on embedded hardware.
Lithium-ion battery packs are usually composed of hundreds of cells arranged in series and parallel connections. The proper functioning of these complex devices requires suitable Battery Management Systems (BMSs). Advanced BMSs rely on mathematical m
We study operations of a battery energy storage system under a baseline-based demand response (DR) program with an uncertain schedule of DR events. Baseline-based DR programs may provide undesired incentives to inflate baseline consumption in non-eve
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo
Efficiently computing the optimal control policy concerning a complicated future with stochastic disturbance has always been a challenge. The predicted stochastic future disturbance can be represented by a scenario tree, but solving the optimal contr
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the