ﻻ يوجد ملخص باللغة العربية
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of non-parametric kernel regression. By treating each prediction step individually, we dispense with the need of propagating sets through highly non-linear maps, a procedure that often involves multiple conservative approximation steps. Finite-sample error bounds are then used to enforce state-feasibility by employing an efficient robust formulation. We then present a relaxation strategy that exploits on-line data to weaken the optimization problem constraints while preserving safety. Two numerical examples are provided to illustrate the applicability of the proposed control method.
We propose a learning-based, distributionally robust model predictive control approach towards the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an autonomous stochastic system, using a hybrid model with continuou
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is requi
We introduce a general framework for robust data-enabled predictive control (DeePC) for linear time-invariant (LTI) systems. The proposed framework enables us to obtain model-free optimal control for LTI systems based on noisy input/output data. More
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the