ﻻ يوجد ملخص باللغة العربية
Powering mobiles using microwave emph{power transfer} (PT) avoids the inconvenience of battery recharging by cables and ensures uninterrupted mobile operation. The integration of PT and emph{information transfer} (IT) allows wireless PT to be realized by building on the existing infrastructure for IT and also leads to compact mobile designs. As a result, emph{simultaneous wireless information and power transfer} (SWIPT) has emerged to be an active research topic that is also the theme of this paper. In this paper, a practical SWIPT system is considered where two multi-antenna stations perform separate PT and IT to a multi-antenna mobile to accommodate their difference in ranges. The mobile dynamically assigns each antenna for either PT or IT. The antenna partitioning results in a tradeoff between the MIMO IT channel capacity and the PT efficiency. The optimal partitioning for maximizing the IT rate under a PT constraint is a NP-hard integer program, and the paper proposes solving it via efficient greedy algorithms with guaranteed performance. To this end, the antenna-partitioning problem is proved to be one that optimizes a sub-modular function over a matroid constraint. This structure allows the application of two well-known greedy algorithms that yield solutions no smaller than the optimal one scaled by factors $(1-1/e)$ and 1/2, respectively.
Simultaneous wireless information and power transfer (SWIPT) is an appealing research area because both information and energy can be delivered to wireless devices simultaneously. In this paper, we propose a diplexer-based receiver architecture that
This paper investigates power splitting for full-duplex relay networks with wireless information and energy transfer. By applying power splitting as a relay transceiver architecture, the full duplex information relaying can be powered by energy harve
This paper investigates the end-to-end throughput maximization problem for a two-hop multiple-relay network, with relays powered by simultaneous wireless information and power transfer (SWIPT) technique. Nonlinearity of energy harvester at every rela
Single-user multiple-input / multiple-output (SU-MIMO) communication systems have been successfully used over the years and have provided a significant increase on a wireless links capacity by enabling the transmission of multiple data streams. Assum
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-o