ترغب بنشر مسار تعليمي؟ اضغط هنا

A Diplexer-Based Receiver for Simultaneous Wireless Information and Power Transfer

94   0   0.0 ( 0 )
 نشر من قبل Chong Qin
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous wireless information and power transfer (SWIPT) is an appealing research area because both information and energy can be delivered to wireless devices simultaneously. In this paper, we propose a diplexer-based receiver architecture that can utilizes both the doubling frequency and baseband signals after the mixer. The baseband signals are used for information decoding and the doubling frequency signals are converted to direct current for energy harvesting. We analyze the signal in the receiver and find that the power of the energy harvested is equal to that of information decoded. Therefore, the diplexer can be used as a power splitter with a power splitting factor of 0.5. Specifically, we consider a multiuser multi-input single-output (MISO) system, in which each user is equipped with the newly proposed receiver. The problem is formulated as an optimization problem that minimizes the total transmitted power subject to some constraints on each users quality of service and energy harvesting demand. We show that the problem thus formulated is a non-convex quadratically constrained quadratic program (QCQP), which can be solved by semi-definite relaxation.

قيم البحث

اقرأ أيضاً

239 - Rahul Vaze , Jainam Doshi , 2014
Powering mobiles using microwave emph{power transfer} (PT) avoids the inconvenience of battery recharging by cables and ensures uninterrupted mobile operation. The integration of PT and emph{information transfer} (IT) allows wireless PT to be realize d by building on the existing infrastructure for IT and also leads to compact mobile designs. As a result, emph{simultaneous wireless information and power transfer} (SWIPT) has emerged to be an active research topic that is also the theme of this paper. In this paper, a practical SWIPT system is considered where two multi-antenna stations perform separate PT and IT to a multi-antenna mobile to accommodate their difference in ranges. The mobile dynamically assigns each antenna for either PT or IT. The antenna partitioning results in a tradeoff between the MIMO IT channel capacity and the PT efficiency. The optimal partitioning for maximizing the IT rate under a PT constraint is a NP-hard integer program, and the paper proposes solving it via efficient greedy algorithms with guaranteed performance. To this end, the antenna-partitioning problem is proved to be one that optimizes a sub-modular function over a matroid constraint. This structure allows the application of two well-known greedy algorithms that yield solutions no smaller than the optimal one scaled by factors $(1-1/e)$ and 1/2, respectively.
This paper investigates power splitting for full-duplex relay networks with wireless information and energy transfer. By applying power splitting as a relay transceiver architecture, the full duplex information relaying can be powered by energy harve sted from the source-emitted radio frequency signal. In order to minimize outage probability, power splitting ratios have been dynamically optimized according to full channel state information (CSI) and partial CSI, respectively. Under strong loop interference, the proposed full CSI-based and partial CSI-based power splitting schemes achieve the better outage performance than the fixed power splitting scheme, whereas the partial CSI-based power splitting scheme can ensure competitive outage performance without requiring CSI of the second-hop link. It is also observed that the worst outage performance is achieved when the relay is located midway between the source and destination, whereas the outage performance of partial CSI-based power splitting scheme approaches that of full CSI-based scheme when the relay is placed close to the destination.
51 - Qi Gu , Gongpu Wang , Rongfei Fan 2019
This paper investigates the end-to-end throughput maximization problem for a two-hop multiple-relay network, with relays powered by simultaneous wireless information and power transfer (SWIPT) technique. Nonlinearity of energy harvester at every rela y node is taken into account and two models for approximating the nonlinearity are adopted: logistic model and linear cut-off model. Decode-and-forward (DF) is implemented, and time switching (TS) mode and power splitting (PS) mode are considered. Optimization problems are formulated for TS mode and PS mode under logistic model and linear cut-off model, respectively. End-to-end throughput is aimed to be maximized by optimizing the transmit power and bandwidth on every source-relay-destination link, and PS ratio and/or TS ratio on every relay node. Although the formulated optimization problems are all non-convex. Through a series of analysis and transformation, and with the aid of bi-level optimization and monotonic optimization, etc., we find the global optimal solution of every formulated optimization problem. In some case, a simple yet optimal solution of the formulated problem is also derived. Numerical results verify the effectiveness of our proposed methods.
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-o ff between the number of communication rounds and communication round time while harvesting energy to compensate the energy expenditure. We formulate and solve an optimization problem by considering the number of local iterations on devices, the time to transmit-receive the model updates, and to harvest sufficient energy. Numerical results indicate that maximum ratio transmission and zero-forcing beamforming for the optimization of the local iterations on devices substantially boost the test accuracy of the learning task. Moreover, maximum ratio transmission instead of zero-forcing provides the best test accuracy and communication round time trade-off for various energy harvesting percentages. Thus, it is possible to learn a model quickly with few communication rounds without depleting the battery.
136 - S. Kisseleff , I.F. Akyildiz , 2015
Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا