ترغب بنشر مسار تعليمي؟ اضغط هنا

The dust mass function from z~0 to z~2

107   0   0.0 ( 0 )
 نشر من قبل Francesca Pozzi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive for the first time the dust mass function (DMF) in a wide redshift range, from z~0.2 up to z~2.5. In order to trace the dust emission, we start from a far-IR (160-um) Herschel selected catalogue in the COSMOS field. We estimate the dust masses by fitting the far-IR data (lam_rest>50um) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1<z<0.25, where we are able to sample faint dust masses, we measure a steep slope (alpha~1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with M_d^star at z~2.5 almost one dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs we estimate the dust mass density (DMD), finding a broad peak at z~1, with a decrease by a factor of ~3 towards z~0 and z~2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al. (2018), another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.



قيم البحث

اقرأ أيضاً

We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This i s achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
At $z=1-3$, the formation of new stars is dominated by dusty galaxies whose far-IR emission indicates they contain colder dust than local galaxies of a similar luminosity. We explore the reasons for the evolving IR emission of similar galaxies over c osmic time using: 1) Local galaxies from GOALS $(L_{rm IR}=10^{11}-10^{12},L_odot)$; 2) Galaxies at $zsim0.1-0.5$ from the 5MUSES ($L_{rm IR}=10^{10}-10^{12},L_odot$); 3) IR luminous galaxies spanning $z=0.5-3$ from GOODS and Spitzer xFLS ($L_{rm IR}>10^{11},L_odot$). All samples have Spitzer mid-IR spectra, and Herschel and ground-based submillimeter imaging covering the full IR spectral energy distribution, allowing us to robustly measure $L_{rm IR}^{rmscriptscriptstyle SF}$, $T_{rm dust}$, and $M_{rm dust}$ for every galaxy. Despite similar infrared luminosities, $z>0.5$ dusty star forming galaxies have a factor of 5 higher dust masses and 5K colder temperatures. The increase in dust mass is linked with an increase in the gas fractions with redshift, and we do not observe a similar increase in stellar mass or star formation efficiency. $L_{160}^{rmscriptscriptstyle SF}/L_{70}^{rmscriptscriptstyle SF}$, a proxy for $T_{rm dust}$, is strongly correlated with $L_{rm IR}^{rmscriptscriptstyle SF}/M_{rm dust}$ independently of redshift. We measure merger classification and galaxy size for a subsample, and there is no obvious correlation between these parameters and $L_{rm IR}^{rm scriptscriptstyle SF}/M_{rm dust}$ or $L_{160}^{rmscriptscriptstyle SF}/L_{70}^{rmscriptscriptstyle SF}$. In dusty star forming galaxies, the change in $L_{rm IR}^{rmscriptscriptstyle SF}/M_{rm dust}$ can fully account for the observed colder dust temperatures, suggesting that any change in the spatial extent of the interstellar medium is a second order effect.
We investigate the evolution of galaxy gas-phase metallicity (O/H) over the range $z=0-3.3$ using samples of $sim300$ galaxies at $zsim2.3$ and $sim150$ galaxies at $zsim3.3$ from the MOSDEF survey. This analysis crucially utilizes different metallic ity calibrations at $zsim0$ and $z>1$ to account for evolving ISM conditions. We find significant correlations between O/H and stellar mass ($M_*$) at $zsim2.3$ and $zsim3.3$. The low-mass power law slope of the mass-metallicity relation is remarkably invariant over $z=0-3.3$, such that $textrm{O/H}propto M_*^{0.30}$ at all redshifts in this range. At fixed $M_*$, O/H decreases with increasing redshift as dlog(O/H)/d$z=-0.11pm0.02$. We find no evidence that the fundamental metallicity relation between $M_*$, O/H, and star-formation rate (SFR) evolves out to $zsim3.3$, with galaxies at $zsim2.3-3.3$ having O/H within 0.04~dex of local galaxies matched in $M_*$ and SFR on average. We employ analytic chemical evolution models to place constraints on the mass and metal loading factors of galactic outflows. The efficiency of metal removal increases toward lower $M_*$ at fixed redshift, and toward higher redshift at fixed $M_*$. These models suggest that the slope of the mass-metallicity relation is set by the scaling of the metal loading factor of outflows with $M_*$, not by the change in gas fraction as a function of $M_*$. The evolution toward lower O/H at fixed $M_*$ with increasing redshift is driven by both higher gas fraction (leading to stronger dilution of ISM metals) and higher metal removal efficiency, with models suggesting that both effects contribute approximately equally to the observed evolution. These results suggest that the processes governing the smooth baryonic growth of galaxies via gas flows and star formation hold in the same form over at least the past 12~Gyr.
Utilising optical and near-infrared broadband photometry covering $> 5,{rm deg}^2$ in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between $0.1 < z < 2.0$. We explor e in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5$mu$m photometry when measuring the GSMF. We find that including IRAC data reduces the number of massive ($log_{10}(M/M_odot) > 11.25$) galaxies found due to improved photometric redshift accuracy, but has little effect on the more numerous lower-mass galaxies. We fit the resultant GSMFs with double Schechter functions down to $log_{10}(M/M_odot)$ = 7.75 (9.75) at z = 0.1 (2.0) and find that the choice of source extraction software has no significant effect on the derived best-fit parameters. However, the choice of methodology used to correct for the Eddington bias has a larger impact on the high-mass end of the GSMF, which can partly explain the spread in derived $M^*$ values from previous studies. Using an empirical correction to model the intrinsic GSMF, we find evidence for an evolving characteristic stellar mass with $delta log_{10}(M^*/M_odot)/delta z$ = $-0.16pm0.05 , (-0.11pm0.05)$, when using SExtractor (ProFound). We argue that with widely quenched star formation rates in massive galaxies at low redshift ($z<0.5$), additional growth via mergers is required in order to sustain such an evolution to a higher characteristic mass.
156 - Vivienne Wild 2016
We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Deep Survey (UDS), with redshifts of 0.5<z<2 and stellar masses logM>10. We find that this transitionary speci es of galaxy is rare at all redshifts, contributing ~5% of the total population at z~2, to <1% by z~0.5. By comparing the mass functions of quiescent galaxies to post-starburst galaxies at three cosmic epochs, we show that rapid quenching of star formation can account for 100% of quiescent galaxy formation, if the post-starburst spectral features are visible for ~250Myr. The flattening of the low mass end of the quiescent galaxy stellar mass function seen at z~1 can be entirely explained by the addition of rapidly quenched galaxies. Only if a significant fraction of post-starburst galaxies have features that are visible for longer than 250Myr, or they acquire new gas and return to the star-forming sequence, can there be significant growth of the red sequence from a slower quenching route. The shape of the mass function of these transitory post-starburst galaxies resembles that of quiescent galaxies at z~2, with a preferred stellar mass of logM~10.6, but evolves steadily to resemble that of star-forming galaxies at z<1. This leads us to propose a dual origin for post-starburst galaxies: (1) at z>2 they are exclusively massive galaxies that have formed the bulk of their stars during a rapid assembly period, followed by complete quenching of further star formation, (2) at z<1 they are caused by the rapid quenching of gas-rich star-forming galaxies, independent of stellar mass, possibly due to environment and/or gas-rich major mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا