ترغب بنشر مسار تعليمي؟ اضغط هنا

The MOSDEF Survey: The Evolution of the Mass-Metallicity Relation from $z=0$ to $zsim3.3$

68   0   0.0 ( 0 )
 نشر من قبل Ryan Sanders
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the evolution of galaxy gas-phase metallicity (O/H) over the range $z=0-3.3$ using samples of $sim300$ galaxies at $zsim2.3$ and $sim150$ galaxies at $zsim3.3$ from the MOSDEF survey. This analysis crucially utilizes different metallicity calibrations at $zsim0$ and $z>1$ to account for evolving ISM conditions. We find significant correlations between O/H and stellar mass ($M_*$) at $zsim2.3$ and $zsim3.3$. The low-mass power law slope of the mass-metallicity relation is remarkably invariant over $z=0-3.3$, such that $textrm{O/H}propto M_*^{0.30}$ at all redshifts in this range. At fixed $M_*$, O/H decreases with increasing redshift as dlog(O/H)/d$z=-0.11pm0.02$. We find no evidence that the fundamental metallicity relation between $M_*$, O/H, and star-formation rate (SFR) evolves out to $zsim3.3$, with galaxies at $zsim2.3-3.3$ having O/H within 0.04~dex of local galaxies matched in $M_*$ and SFR on average. We employ analytic chemical evolution models to place constraints on the mass and metal loading factors of galactic outflows. The efficiency of metal removal increases toward lower $M_*$ at fixed redshift, and toward higher redshift at fixed $M_*$. These models suggest that the slope of the mass-metallicity relation is set by the scaling of the metal loading factor of outflows with $M_*$, not by the change in gas fraction as a function of $M_*$. The evolution toward lower O/H at fixed $M_*$ with increasing redshift is driven by both higher gas fraction (leading to stronger dilution of ISM metals) and higher metal removal efficiency, with models suggesting that both effects contribute approximately equally to the observed evolution. These results suggest that the processes governing the smooth baryonic growth of galaxies via gas flows and star formation hold in the same form over at least the past 12~Gyr.



قيم البحث

اقرأ أيضاً

We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This i s achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M$_*$-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at $zsim2.3$ from the MOSDEF survey. We present an a nalysis of the high-redshift M$_*$-SFR-Z relation based on several emission-line ratios for the first time. We show that a M$_*$-SFR-Z relation clearly exists at $zsim2.3$. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of $zsim0$ and $zsim2.3$ galaxies, we find that $zsim2.3$ galaxies have $sim0.1$ dex lower metallicity at fixed M$_*$ and SFR. In the context of chemical evolution models, this evolution of the M$_*$-SFR-Z relation suggests an increase with redshift of the mass-loading factor at fixed M$_*$, as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed M$_*$ at $zsim2.3$. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.
We analyze the rest-optical emission-line ratios of z~1.5 galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Using composite spectra we investigate the mass-metallicity relation (MZR) at z~1.5 and measure its evolution to z=0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z~1.5 to z=0 depends on stellar mass, evolving by $Deltarm log(rm O/H)sim0.25$ dex at $M_*<10^{9.75}M_{odot}$ down to $Deltarm log(rm O/H)sim0.05$ at $M_*>10^{10.5}M_{odot}$. In contrast, the O3N2-based MZR shows a constant offset of $Deltarm log(rm O/H)sim0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z~1.5 sample. We investigated the secondary dependence of the MZR on SFR by measuring correlated scatter about the mean $M_*$-specific SFR and $M_*-log(rm O3N2)$ relations. We find an anti-correlation between $log(rm O/H)$ and sSFR offsets, indicating the presence of a $M_*$-SFR-Z relation, though with limited significance. Additionally, we find that our z~1.5 stacks lie along the z=0 metallicity sequence at fixed $mu=log(M_*/M_{odot})-0.6timeslog(rm SFR / M_{odot} yr^{-1})$ suggesting that the z~1.5 stacks can be described by the z=0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [NII]/H$alpha$ scales with galaxy properties is crucial to accurately describe the effects of blended [NII] and H$alpha$ on redshift and H$alpha$ flux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.
We analyse the metallicity histories of ~4,500 galaxies from the GAMA survey at z<0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star format ion histories, allow us to analyse the inferred gas-phase mass--metallicity relation. Furthermore, we extract the mass--metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass--metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass--metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three dimensional mass--metallicity--SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED fitting outputs.
We measure the gas-phase oxygen abundances of ~3000 star-forming galaxies at z=0.05-0.75 using optical spectrophotometry from the AGN and Galaxy Evolution Survey (AGES), a spectroscopic survey of I_AB<20.45 galaxies over 7.9 deg^2 in the NOAO Deep Wi de Field Survey (NDWFS) Bootes field. We use state-of-the-art techniques to measure the nebular emission lines and stellar masses, and explore and quantify several potential sources of systematic error, including the choice of metallicity diagnostic, aperture bias, and contamination from unidentified active galactic nuclei (AGN). Combining volume-limited AGES samples in six independent redshift bins and ~75,000 star-forming galaxies with r_AB<17.6 at z=0.05-0.2 selected from the Sloan Digital Sky Survey (SDSS) that we analyze in the identical manner, we measure the evolution of the stellar mass-metallicity (M-Z) between z=0.05 and z=0.75. We find that at fixed stellar mass galaxies at z~0.7 have just 30%-60% the metal content of galaxies at the present epoch, where the uncertainty is dominated by the strong-line method used to measure the metallicity. Moreover, we find no statistically significant evidence that the M-Z relation evolves in a mass-dependent way for M=10^9.8-10^11 Msun star-forming galaxies. Thus, for this range of redshifts and stellar masses the M-Z relation simply shifts toward lower metallicity with increasing redshift without changing its shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا