ﻻ يوجد ملخص باللغة العربية
Bipolar disorder (BPD) is a chronic mental illness characterized by extreme mood and energy changes from mania to depression. These changes drive behaviors that often lead to devastating personal or social consequences. BPD is managed clinically with regular interactions with care providers, who assess mood, energy levels, and the form and content of speech. Recent work has proposed smartphones for monitoring mood using speech. However, these works do not predict when to intervene. Predicting when to intervene is challenging because there is not a single measure that is relevant for every person: different individuals may have different levels of symptom severity considered typical. Additionally, this typical mood, or baseline, may change over time, making a single symptom threshold insufficient. This work presents an innovative approach that expands clinical mood monitoring to predict when interventions are necessary using an anomaly detection framework, which we call Temporal Normalization. We first validate the model using a dataset annotated for clinical interventions and then incorporate this method in a deep learning framework to predict mood anomalies from natural, unstructured, telephone speech data. The combination of these approaches provides a framework to enable real-world speech-focused mood monitoring.
The ubiquity of smartphone usage in many peoples lives make it a rich source of information about a persons mental and cognitive state. In this work we analyze 12 weeks of phone usage data from 113 older adults, 31 with diagnosed cognitive impairment
Continuous, ubiquitous monitoring through wearable sensors has the potential to collect useful information about users context. Heart rate is an important physiologic measure used in a wide variety of applications, such as fitness tracking and health
Allocation strategies improve the efficiency of crowdsourcing by decreasing the work needed to complete individual tasks accurately. However, these algorithms introduce bias by preferentially allocating workers onto easy tasks, leading to sets of com
Hypoxemia, a medical condition that occurs when the blood is not carrying enough oxygen to adequately supply the tissues, is a leading indicator for dangerous complications of respiratory diseases like asthma, COPD, and COVID-19. While purpose-built
We formulate the abnormal event detection problem as an outlier detection task and we propose a two-stage algorithm based on k-means clustering and one-class Support Vector Machines (SVM) to eliminate outliers. In the feature extraction stage, we pro