ﻻ يوجد ملخص باللغة العربية
We formulate the abnormal event detection problem as an outlier detection task and we propose a two-stage algorithm based on k-means clustering and one-class Support Vector Machines (SVM) to eliminate outliers. In the feature extraction stage, we propose to augment spatio-temporal cubes with deep appearance features extracted from the last convolutional layer of a pre-trained neural network. After extracting motion and appearance features from the training video containing only normal events, we apply k-means clustering to find clusters representing different types of normal motion and appearance features. In the first stage, we consider that clusters with fewer samples (with respect to a given threshold) contain mostly outliers, and we eliminate these clusters altogether. In the second stage, we shrink the borders of the remaining clusters by training a one-class SVM model on each cluster. To detected abnormal events in the test video, we analyze each test sample and consider its maximum normality score provided by the trained one-class SVM models, based on the intuition that a test sample can belong to only one cluster of normality. If the test sample does not fit well in any narrowed normality cluster, then it is labeled as abnormal. We compare our method with several state-of-the-art methods on three benchmark data sets. The empirical results indicate that our abnormal event detection framework can achieve better results in most cases, while processing the test video in real-time at 24 frames per second on a single CPU.
Bipolar disorder (BPD) is a chronic mental illness characterized by extreme mood and energy changes from mania to depression. These changes drive behaviors that often lead to devastating personal or social consequences. BPD is managed clinically with
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years. The complexity of the task arises from the commonly-adopted definition of an abnormal event, that is, a rarely occurring
Video abnormal event detection (VAD) is a vital semi-supervised task that requires learning with only roughly labeled normal videos, as anomalies are often practically unavailable. Although deep neural networks (DNNs) enable great progress in VAD, ex
In this work, we address the problem of precisely localizing key frames of an action, for example, the precise time that a pitcher releases a baseball, or the precise time that a crowd begins to applaud. Key frame localization is a largely overlooked
Video anomaly detection is a challenging task because of diverse abnormal events. To this task, methods based on reconstruction and prediction are wildly used in recent works, which are built on the assumption that learning on normal data, anomalies