ﻻ يوجد ملخص باللغة العربية
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-dimensional Ising model and the Lipkin model. We show that the Hellmann-Feynman theorem allows one to calculate expectation values of operators that appear in the Hamiltonian. This is particularly useful when the total free-energy is available, but there is not direct access to the thermal average of the operators themselves.
It is known that entanglement can be converted to work in quantum composite systems. In this paper we consider a quench protocol for two initially independent reservoirs $A$ and $B$ described by the quantum thermal states. For a free fermion model at
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete
The Feynman-Hellmann (FH) relation offers an alternative way of accessing hadronic matrix elements through artificial modifications to the QCD Lagrangian. In particular, a FH-motivated method provides a new approach to calculations of disconnected co
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The entirety $S$$+$$E$ is prepared in a canonical thermal state at a finite temperature, that is the entirety is in a ste
The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target m