ﻻ يوجد ملخص باللغة العربية
The Feynman-Hellmann (FH) relation offers an alternative way of accessing hadronic matrix elements through artificial modifications to the QCD Lagrangian. In particular, a FH-motivated method provides a new approach to calculations of disconnected contributions to matrix elements and high-momentum nucleon and pion form factors. Here we present results for the total nucleon axial charge, including a statistically significant non-negative total disconnected quark contribution of around $-5%$ at an unphysically heavy pion mass. Extending the FH relation to finite-momentum transfers, we also present calculations of the pion and nucleon electromagnetic form factors up to momentum transfers of around 7-8 GeV$^2$. Results for the nucleon are not able to confirm the existence of a sign change for the ratio $frac{G_E}{G_M}$, but suggest that future calculations at lighter pion masses will provide fascinating insight into this behaviour at large momentum transfers.
The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target m
We perform a Nf = 2 + 1 lattice QCD simulation to determine the quark spin fractions of hadrons using the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix elements relevant for quark spin fractions
The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix ele
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-
Study of the hadronic matrix elements can provide not only tests of the QCD sector of the Standard Model (in comparing with existing experiments) but also reliable low-energy hadronic quantities applicable to a wide range of beyond-the-Standard Model