ﻻ يوجد ملخص باللغة العربية
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
Efficient ab initio calculations of correlated materials at finite temperature require compact representations of the Greens functions both in imaginary time and Matsubara frequency. In this paper, we introduce a general procedure which generates spa
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-
We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially
It is known that entanglement can be converted to work in quantum composite systems. In this paper we consider a quench protocol for two initially independent reservoirs $A$ and $B$ described by the quantum thermal states. For a free fermion model at