ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden magnetism at the pseudogap critical point of a high temperature superconductor

131   0   0.0 ( 0 )
 نشر من قبل David LeBoeuf
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mysterious pseudogap phase of cuprate superconductors ends at a critical hole doping level p* but the nature of the ground state below p* is still debated. Here, we show that the genuine nature of the magnetic ground state in La2-xSrxCuO4 is hidden by competing effects from superconductivity: applying intense magnetic fields to quench superconductivity, we uncover the presence of glassy antiferromagnetic order up to the pseudogap boundary p* ~ 0.19, and not above. There is thus a quantum phase transition at p*, which is likely to underlie highfield observations of a fundamental change in electronic properties across p*. Furthermore, the continuous presence of quasi-static moments from the insulator up to p* suggests that the physics of the doped Mott insulator is relevant through the entire pseudogap regime and might be more fundamentally driving the transition at p* than just spin or charge ordering.

قيم البحث

اقرأ أيضاً

The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O$_y$ ends sharply at a critical doping $p = 0.16$, distinctly lower than the pseudogap critical point at $p^* = 0.19$. This shows that pseudogap and charge order are separate phenomena. We then find that the change of carrier density from $n = 1 + p$ in the conventional metal at high p to $n = p$ at low $p$ - a signature of the lightly doped cuprates - starts at $p^*$. This shows that pseudogap and antiferromagnetic Mott insulator are linked.
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the ze ro-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.
192 - K. Ishida , S. Hosoi , Y. Teramoto 2019
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuat ions. In these systems, superconductivity is often found near a magnetic quantum critical point (QCP) where a magnetic phase vanishes in the zero-temperature limit. Moreover, the maximum of superconducting transition temperature Tc frequently locates near the magnetic QCP, suggesting that the proliferation of critical spin fluctuations emanating from the QCP plays an important role in Cooper pairing. In cuprate superconductors, however, the superconducting dome is usually separated from the antiferromagnetic phase and Tc attains its maximum value near the verge of enigmatic pseudogap state that appears below doping-dependent temperature T*. Thus a clue to the pairing mechanism resides in the pseudogap and associated anomalous transport properties. Recent experiments suggested a phase transition at T*, yet, most importantly, relevant fluctuations associated with the pseudogap have not been identified. Here we report on direct observations of enhanced nematic fluctuations in (Bi,Pb)2Sr2CaCu2O8+d by elastoresistance measurements, which couple to twofold in-plane electronic anisotropy, i.e. electronic nematicity. The nematic susceptibility shows Curie-Weiss-like temperature dependence above T*, and an anomaly at T* evidences a second-order transition with broken rotational symmetry. Near the pseudogap end point, where Tc is not far from its peak in the superconducting dome, nematic susceptibility becomes singular and divergent, indicating the presence of a nematic QCP. This signifies quantum critical fluctuations of a nematic order, which has emerging links to the high-Tc superconductivity and strange metallic behaviours in cuprates.
The pseudogap is one of the most pervasive phenomena of high temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature Tc, or to a hidden order parameter competing wi th superconductivity. Here we use inelastic neutron scattering from underdoped YBa(2)Cu(3)O(6.6) to show that the dispersion relations of spin excitations in the superconducting and pseudogap states are qualitatively different. Specifically, the extensively studied hour glass shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudogap state and we observe an unusual vertical dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudogap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudogap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work.
178 - E.V.L. de Mello 2001
We report simultaneous hydrostatic pressure studies on the critical temperature $T_c$ and on the pseudogap temperature $T^*$ performed through resistivity measurements on an optimally doped high-$T_c$ oxide $Hg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+delta}$ . The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both $T_c$ and $T^*$ increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on $T_c$ is also present at $T^*$ and both temperatures are originated by the same superconducting mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا