ﻻ يوجد ملخص باللغة العربية
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuations. In these systems, superconductivity is often found near a magnetic quantum critical point (QCP) where a magnetic phase vanishes in the zero-temperature limit. Moreover, the maximum of superconducting transition temperature Tc frequently locates near the magnetic QCP, suggesting that the proliferation of critical spin fluctuations emanating from the QCP plays an important role in Cooper pairing. In cuprate superconductors, however, the superconducting dome is usually separated from the antiferromagnetic phase and Tc attains its maximum value near the verge of enigmatic pseudogap state that appears below doping-dependent temperature T*. Thus a clue to the pairing mechanism resides in the pseudogap and associated anomalous transport properties. Recent experiments suggested a phase transition at T*, yet, most importantly, relevant fluctuations associated with the pseudogap have not been identified. Here we report on direct observations of enhanced nematic fluctuations in (Bi,Pb)2Sr2CaCu2O8+d by elastoresistance measurements, which couple to twofold in-plane electronic anisotropy, i.e. electronic nematicity. The nematic susceptibility shows Curie-Weiss-like temperature dependence above T*, and an anomaly at T* evidences a second-order transition with broken rotational symmetry. Near the pseudogap end point, where Tc is not far from its peak in the superconducting dome, nematic susceptibility becomes singular and divergent, indicating the presence of a nematic QCP. This signifies quantum critical fluctuations of a nematic order, which has emerging links to the high-Tc superconductivity and strange metallic behaviours in cuprates.
The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here
The thermal conductivity $kappa$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured down to 50 mK in seven crystals with doping from $p=0.12$ to $p=0.24$, both in the superconducting state and in the magnetic field-induced
The mysterious pseudogap phase of cuprate superconductors ends at a critical hole doping level p* but the nature of the ground state below p* is still debated. Here, we show that the genuine nature of the magnetic ground state in La2-xSrxCuO4 is hidd
We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant lattice strain restricts critica
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling micro