ﻻ يوجد ملخص باللغة العربية
The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without a careful analysis of the host star parameters. The system of HD219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We used the VEGA/CHARA interferometer to measure the angular diameter of HD219134, leading to a stellar radius of $R_{star}=0.726pm0.014 R_{odot}$. We also derived the stellar density from the transits light curves ($rho_{star}=1.82pm0.19 rho_{odot}$), which finally gives a direct estimate of the mass ($M_{star}=0.696pm0.078 M_{odot}$) with a correlation of 0.46 between $R_{star}$ and $M_{star}$. This new mass is smaller than that derived from the C2kSMO stellar evolutionary model, which provides a mass range of 0.755$-$0.810 ($pm 0.040$) $M_{odot}$. This allows us to infer the mass, radius and density of the two transiting exoplanets of the system. We then use an inference model to obtain the internal parameters of these two transiting exoplanets. Moreover, we find that planet $b$ and $c$ have smaller radii than previously estimated ($1.500pm0.057$ and $1.415pm0.049 R_{oplus}$, respectively); this clearly puts these planets out of the gap in the exoplanetary radii distribution and validates their super-Earth nature. Planet $b$ is more massive than planet $c$, but possibly less dense. We investigate whether this could be caused by partial melting of the mantle and find that tidal heating due to non-zero eccentricity of planet $b$ may be powerful enough. The system of HD219134 constitutes a very valuable benchmark for both stellar physics and exoplanetary science. The direct determination of the stellar density, radius and mass should be more extensively applied to provide accurate exoplanets properties and calibrate stellar models.
The discovery of multiple transiting planetary systems offers new possibilities for characterising exoplanets and understanding their formation. The Kepler-9 system contains two Saturn-mass planets, Kepler-9b and 9c. Using evolution models of gas gia
The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems
We present a 3D study of the formation of refractory-rich exospheres around the rocky planets HD219134b and c. These exospheres are formed by surface particles that have been sputtered by the wind of the host star. The stellar wind properties are der
The primary objectives of the ExoplANETS-A project are to: establish new knowledge on exoplanet atmospheres; establish new insight on influence of the host star on the planet atmosphere; disseminate knowledge, using online, web-based platforms. The p
When searching for exoplanets and ultimately considering their habitability, it is necessary to consider the planets composition, geophysical processes, and geochemical cycles in order to constrain the bioessential elements available to life. Determi