ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of the HD219134 multi-planet system II. Stellar-wind sputtered exospheres in rocky planets b & c

385   0   0.0 ( 0 )
 نشر من قبل Aline Vidotto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Vidotto




اسأل ChatGPT حول البحث

We present a 3D study of the formation of refractory-rich exospheres around the rocky planets HD219134b and c. These exospheres are formed by surface particles that have been sputtered by the wind of the host star. The stellar wind properties are derived from magnetohydrodynamic simulations, which are driven by observationally-derived stellar magnetic field maps, and constrained by Ly-alpha observations of wind mass-loss rates, making this one of the most well constrained model of winds of low-mass stars. The proximity of the planets to their host star implies a high flux of incident stellar wind particles, thus the sputtering process is sufficiently effective to build up relatively dense, refractory-rich exospheres. The sputtering releases refractory elements from the entire dayside surfaces of the planets, with elements such as O and Mg creating an extended neutral exosphere with densities larger than 10/cm3, extending to several planetary radii. For planet b, the column density of OI along the line of sight reaches 10^{13}/cm2, with the highest values found ahead of its orbital motion. This asymmetry would create asymmetric transit profiles. To assess its observability, we use a ray tracing technique to compute the expected transit depth of the OI exosphere of planet b. We find that the transit depth in the OI 1302.2A line is 0.042%, which is a small increase relative to the continuum transit (0.036%). This implies that the sputtered exosphere of HD219134b is unlikely to be detectable with our current UV instruments.

قيم البحث

اقرأ أيضاً

HD 219134 hosts several planets, with seven candidates reported, and the two shortest period planets are rocky (4-5 $M_{oplus}$) and transit the star. Here we present contemporaneous multi-wavelength observations of the star HD 219134. We observed HD 219134 with the Narval spectropolarimeter at the Observatoire du Pic du Midi, and used Zeeman Doppler Imaging to characterise its large-scale stellar magnetic field. We found a weak poloidal magnetic field with an average unsigned strength of 2.5 G. From these data we confidently confirm the rotation period of 42 days, measure a stellar inclination of 77$pm$8 degrees, and find evidence for differential rotation. The projected obliquity of the two transiting super-Earths is therefore between 0 and 20 degrees. We employed HST STIS observations of the Ly$alpha$ line to derive a stellar wind mass-loss rate of half the solar value ($10^{-14} M_{odot} {rm yr}^{-1}$). We further collected photometric transit observations of the closest planet at near-UV wavelengths centred on the Mg II h&k lines with AstroSat. We found no detectable absorption, setting an upper limit on the transit depth of about 3%, which rules out the presence of a giant magnesium cloud larger than 9 planet radii. Finally, we estimated the high-energy flux distribution of HD 219134 as seen by planets b and c. These results present a detailed contemporaneous characterisation of HD 219134, and provide the ingredients necessary for accurately modelling the high-energy stellar flux, the stellar wind, and their impact on the two shortest-period planets, which will be presented in the second paper of this series.
86 - F. Motalebi , S. Udry , M. Gillon 2015
We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{oplus} and 1.606 +/- 0.086 R_{oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.
HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new $L$ and $M$ observations of the planet from the NACO instrument at the VLT from the NACO-ISPY survey, as well as a new $Y-H$ spect rum and $K$-band photometry from SPHERE-SHINE. Using these data, we confirm the nature of the companion as a warm, dusty planet with a mid-L spectral type. From comparison of its SED with the BT-Settl atmospheric models, we derive a best-fit effective temperature of $T_{text{eff}}=1618pm7$ K, surface gravity $log g=3.78^{+0.04}_{-0.03}$ and radius $R=1.17pm0.04$ $R_{text{J}}$ (statistical uncertainties only). Using the DUSTY and COND isochrones we estimate a mass of $8pm1$ $M_{text{J}}$. Combining the astrometric measurements from our new datasets and from the literature, we show the first indications of orbital motion of the companion (2.6$sigma$ significance) and derive preliminary orbital constraints. We find a highly inclined orbit ($i=107^{+13}_{-10}$ deg) with an orbital period of $800^{+1200}_{-400}$ yr. We also report SPHERE sparse aperture masking observations that investigate the possibility that HIP 65426 b was scattered onto its current orbit by an additional companion at a smaller orbital separation. From this data we rule out the presence of brown dwarf companions with masses greater than 16 $M_{text{J}}$ at separations larger than 3 AU, significantly narrowing the parameter space for such a companion.
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival HARPS spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of 7.51(+1.09)(-1.01) M_Earth, and a radius of 1.64+/-0.06 R_Earth, HD 15337b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337c has an orbital period of 17.2 days, a mass of 8.11(+1.82)(-1.69) M_Earth, and a radius of 2.39+/-0.12 R_Earth, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly-$alpha$ transits of a Hot Jupiter (HJ) and a Warm Neptune (WN). We find that incr easing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65% and 40% for the HJ and WN, respectively, compared to the no wind case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. Closed refers to scenarios where the sonic surface is undisturbed, while open refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly-$alpha$ transit in a non-linear way. Although little change is seen in planetary escape rates ($simeq 5.5times 10^{11}$g/s) in the closed to partially open regimes, the Ly-$alpha$ absorption (sum of the blue [-300, -40 km/s] & red [40, 300 km/s] wings) changes from 21% to 6% as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of $simeq 6.5times 10^{10}$g/s can cause transit absorptions that vary from 8.8% to 3.7%, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly-$alpha$ transits can lead to underestimation of planetary escape rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا