ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet host-star properties: the active environment of exoplanets

82   0   0.0 ( 0 )
 نشر من قبل John Pye
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary objectives of the ExoplANETS-A project are to: establish new knowledge on exoplanet atmospheres; establish new insight on influence of the host star on the planet atmosphere; disseminate knowledge, using online, web-based platforms. The project, funded under the EUs Horizon-2020 programme, started in January 2018 and has a duration ~3 years. We present an overview of the project, the activities concerning the host stars and some early results on the host stars.



قيم البحث

اقرأ أيضاً

215 - E. Herrero 2010
We report the discovery of photometric oscillations in the host star of the exoplanet WASP-33 b (HD 15082). The data were obtained in the R band in both transit and out-of-transit phases from the 0.3-m telescope and the Montcabrer Observatory and the 0.8-m telescope at the Montsec Astronomical Observatory. Proper fitting and subsequent removal of the transit signal reveals stellar photometric variations with a semi-amplitude of about 1 mmag. The detailed analysis of the periodogram yields a structure of significant signals around a frequency of 21 cyc per day, which is typical of delta Scuti-type variable stars. An accurate study of the power spectrum reveals a possible commensurability with the planet orbital motion with a factor of 26, but this remains to be confirmed with additional time-series data that will permit the identification of the significant frequencies. These findings make WASP-33 the first transiting exoplanet host star with delta Sct variability and a very interesting candidate to search for star-planet interactions.
76 - M. Narang 2018
Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 $Kepler$ candidates from the latest $Kepler$ data release DR25 (Q1-Q17) with revised planetary radii based on $Gaia$~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses $> 4.0, M_mathrm{J}$: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric p arameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
Our understanding of the properties and demographics of exoplanets critically relies on our ability to determine fundamental properties of their host stars. The advent of Gaia and large spectroscopic surveys has now made it in principle possible to i nfer properties of individual stars, including most exoplanet hosts, to very high precision. However, we show that in practice, such analyses are limited both by uncertainties in the fundamental scale, and by uncertainties in our models of stellar evolution, even for stars similar to the Sun. For example, we show that current uncertainties on measured interferometric angular diameters and bolometric fluxes set a systematic uncertainty floor of $sim$2% in temperature, $sim$2% in luminosity, and $sim$4% in radius. Comparisons between widely available model grids suggest uncertainties of order $sim$5% in mass and $sim$20% in age for main sequence and subgiant stars. While the radius uncertainties are roughly constant over this range of stars, the model dependent uncertainties are a complex function of luminosity, temperature, and metallicity. We provide open-source software for approximating these uncertainties for individual targets, and discuss strategies for reducing these uncertainties in the future.
We embark on a detailed study of the lightcurves of Keplers most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass loss rates, gyrochronological ages , X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the lightcurve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166AU to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا