ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Bit-Slice Sparsity in Deep Neural Networks for Efficient ReRAM-Based Deployment

273   0   0.0 ( 0 )
 نشر من قبل Huanrui Yang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Emerging resistive random-access memory (ReRAM) has recently been intensively investigated to accelerate the processing of deep neural networks (DNNs). Due to the in-situ computation capability, analog ReRAM crossbars yield significant throughput improvement and energy reduction compared to traditional digital methods. However, the power hungry analog-to-digital converters (ADCs) prevent the practical deployment of ReRAM-based DNN accelerators on end devices with limited chip area and power budget. We observe that due to the limited bit-density of ReRAM cells, DNN weights are bit sliced and correspondingly stored on multiple ReRAM bitlines. The accumulated current on bitlines resulted by weights directly dictates the overhead of ADCs. As such, bitwise weight sparsity rather than the sparsity of the full weight, is desirable for efficient ReRAM deployment. In this work, we propose bit-slice L1, the first algorithm to induce bit-slice sparsity during the training of dynamic fixed-point DNNs. Experiment results show that our approach achieves 2x sparsity improvement compared to previous algorithms. The resulting sparsity allows the ADC resolution to be reduced to 1-bit of the most significant bit-slice and down to 3-bit for the others bits, which significantly speeds up processing and reduces power and area overhead.

قيم البحث

اقرأ أيضاً

Recurrent Neural Networks (RNN) are widely used to solve a variety of problems and as the quantity of data and the amount of available compute have increased, so have model sizes. The number of parameters in recent state-of-the-art networks makes the m hard to deploy, especially on mobile phones and embedded devices. The challenge is due to both the size of the model and the time it takes to evaluate it. In order to deploy these RNNs efficiently, we propose a technique to reduce the parameters of a network by pruning weights during the initial training of the network. At the end of training, the parameters of the network are sparse while accuracy is still close to the original dense neural network. The network size is reduced by 8x and the time required to train the model remains constant. Additionally, we can prune a larger dense network to achieve better than baseline performance while still reducing the total number of parameters significantly. Pruning RNNs reduces the size of the model and can also help achieve significant inference time speed-up using sparse matrix multiply. Benchmarks show that using our technique model size can be reduced by 90% and speed-up is around 2x to 7x.
Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks, and thus, have been widely investigated. However, it lacks a systematic method to determine the exact quantiza tion scheme. Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space. These approaches cannot lead to an optimal quantization scheme efficiently. This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity. We consider each bit of quantized weights as an independent trainable variable and introduce a differentiable bit-sparsity regularizer. BSQ can induce all-zero bits across a group of weight elements and realize the dynamic precision reduction, leading to a mixed-precision quantization scheme of the original model. Our method enables the exploration of the full mixed-precision space with a single gradient-based optimization process, with only one hyperparameter to tradeoff the performance and compression. BSQ achieves both higher accuracy and higher bit reduction on various model architectures on the CIFAR-10 and ImageNet datasets comparing to previous methods.
Quantization is spearheading the increase in performance and efficiency of neural network computing systems making headway into commodity hardware. We present SWIS - Shared Weight bIt Sparsity, a quantization framework for efficient neural network in ference acceleration delivering improved performance and storage compression through an offline weight decomposition and scheduling algorithm. SWIS can achieve up to 54.3% (19.8%) point accuracy improvement compared to weight truncation when quantizing MobileNet-v2 to 4 (2) bits post-training (with retraining) showing the strength of leveraging shared bit-sparsity in weights. SWIS accelerator gives up to 6x speedup and 1.9x energy improvement overstate of the art bit-serial architectures.
Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This presents a major concern for deployment in real-world applications, where such behavior may come at a great cost -- as in the case of autonomous vehicles or healthcare applications. This paper frames the Out Of Distribution (OOD) detection problem in DNN as a statistical hypothesis testing problem. Unlike previous OOD detection heuristics, our framework is guaranteed to maintain the false positive rate (detecting OOD as in-distribution) for test data. We build on this framework to suggest a novel OOD procedure based on low-order statistics. Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters -- and at a fraction of the computational cost.
We argue that the vulnerability of model parameters is of crucial value to the study of model robustness and generalization but little research has been devoted to understanding this matter. In this work, we propose an indicator to measure the robust ness of neural network parameters by exploiting their vulnerability via parameter corruption. The proposed indicator describes the maximum loss variation in the non-trivial worst-case scenario under parameter corruption. For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials that can hardly induce the worst accuracy degradation. Equipped with theoretical support and empirical validation, we are able to systematically investigate the robustness of different model parameters and reveal vulnerability of deep neural networks that has been rarely paid attention to before. Moreover, we can enhance the models accordingly with the proposed adversarial corruption-resistant training, which not only improves the parameter robustness but also translates into accuracy elevation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا