ﻻ يوجد ملخص باللغة العربية
The dust properties in high-redshift galaxies provide clues to the origin of dust in the Universe. Although dust has been detected in galaxies at redshift $z>7$, it is difficult to constrain the dominant dust sources only from the total dust amount. Thus, we calculate the evolution of grain size distribution, expecting that different dust sources predict different grain size distributions. Using the star formation time-scale and the total baryonic mass constrained by the data in the literature, we calculate the evolution of grain size distribution. To explain the total dust masses in ALMA-detected $z>7$ galaxies, the following two solutions are possible: (i) high dust condensation efficiency in stellar ejecta, and (ii) efficient accretion (dust growth by accreting the gas-phase metals in the interstellar medium). We find that these two scenarios predict significantly different grain size distributions: in (i), the dust is dominated by large grains ($agtrsim 0.1~mu$m, where $a$ is the grain radius), while in (ii), the small-grain ($alesssim 0.01~mu$m) abundance is significantly enhanced by accretion. Accordingly, extinction curves are expected to be much steeper in (ii) than in (i). Thus, we conclude that extinction curves provide a viable way to distinguish the dominant dust sources in the early phase of galaxy evolution.
We report new deep ALMA observations aimed at investigating the [CII]158um line and continuum emission in three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star Formation Rates of SFR
Based on a one-zone evolution model of grain size distribution in a galaxy, we calculate the evolution of infrared spectral energy distribution (SED), considering silicate, carbonaceous dust, and polycyclic aromatic hydrocarbons (PAHs). The dense gas
We investigate the abundance and properties (especially, grain size) of dust in galaxy halos using available observational data in the literature. There are two major sets of data. One is (i) the reddening curves at redshifts $zsim 1$ and 2 derived f
We calculate dust spectral energy distributions (SEDs) for a range of grain sizes and compositions, using physical properties appropriate for five pulsar wind nebulae (PWNe) from which dust emission associated with the ejecta has been detected. By fi
We present new results on [CII]158$mu$ m emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Ly$alpha$ emission line in their spectra. The Ly