ﻻ يوجد ملخص باللغة العربية
Neural avalanches are collective firings of neurons that exhibit emergent scale-free behavior. Understanding the nature and distribution of these avalanches is an important element in understanding how the brain functions. We study a model of neural avalanches for which the dynamics are governed by neutral theory. The neural avalanches are defined using causal connections between the firing neurons. We analyze the scaling of causal neural avalanches as the critical point is approached from the absorbing phase. By using cluster analysis tools from percolation theory, we characterize the critical properties of the neural avalanches. We identify the tuning parameters consistent with experiments. The scaling hypothesis provides a unified explanation of the power laws which characterize the critical point. The critical exponents characterizing the avalanche distributions and divergence of the response functions are consistent with the predictions of the scaling hypothesis. We use a universal scaling function for the avalanche profile to find that the firing rates for avalanches of different durations show data collapse after appropriate rescaling. We also find data collapse for the avalanche distribution functions, which is stronger evidence of criticality than just the existence of power laws. Critical slowing-down and power law relaxation of avalanches is observed as the system is tuned to its critical point. We discuss how our results motivate future empirical studies of criticality in the brain.
Based on a theoretical model for opinion spreading on a network, through avalanches, the effect of external field is now considered, by using methods from non-equilibrium statistical mechanics. The original part contains the implementation that the a
The accumulation of potassium in the narrow space outside nerve cells is a classical subject of biophysics that has received much attention recently. It may be involved in potassium accumulation textcolor{black}{including} spreading depression, perha
The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a syste
In physics of living systems, a search for relationships of a few macroscopic variables that emerge from many microscopic elements is a central issue. We evolved gene regulatory networks so that the expression of target genes (partial system) is inse
An avalanche or cascade occurs when one event causes one or more subsequent events, which in turn may cause further events in a chain reaction. Avalanching dynamics are studied in many disciplines, with a recent focus on average avalanche shapes, i.e