ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal profiles of avalanches on networks

171   0   0.0 ( 0 )
 نشر من قبل James Gleeson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An avalanche or cascade occurs when one event causes one or more subsequent events, which in turn may cause further events in a chain reaction. Avalanching dynamics are studied in many disciplines, with a recent focus on average avalanche shapes, i.e., the temporal profiles that characterize the growth and decay of avalanches of fixed duration. At the critical point of the dynamics the average avalanche shapes for different durations can be rescaled so that they collapse onto a single universal curve. We apply Markov branching process theory to derive a simple equation governing the average avalanche shape for cascade dynamics on networks. Analysis of the equation at criticality demonstrates that nonsymmetric average avalanche shapes (as observed in some experiments) occur for certain combinations of dynamics and network topology; specifically, on networks with heavy-tailed degree distributions. We give examples using numerical simulations of models for information spreading, neural dynamics, and behaviour adoption and we propose simple experimental tests to quantify whether cascading systems are in the critical state.



قيم البحث

اقرأ أيضاً

Based on a theoretical model for opinion spreading on a network, through avalanches, the effect of external field is now considered, by using methods from non-equilibrium statistical mechanics. The original part contains the implementation that the a valanche is only triggered when a local variable (a so called awareness) reaches and goes above a threshold. The dynamical rules are constrained to be as simple as possible, in order to sort out the basic features, though more elaborated variants are proposed. Several results are obtained for a Erdos-Renyi network and interpreted through simple analytical laws, scale free or logistic map-like, i.e., (i) the sizes, durations, and number of avalanches, including the respective distributions, (ii) the number of times the external field is applied to one possible node before all nodes are found to be above the threshold, (iii) the number of nodes still below the threshold and the number of hot nodes (close to threshold) at each time step.
Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gather ings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such game s, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
Power-grid systems constitute one of the most complex man-made spatially extended structures. These operate with strict operational bounds to ensure synchrony across the grid. This is particularly relevant for power-grid frequency, which operates str ictly at $50,$Hz ($60,$Hz). Nevertheless, small fluctuations around the mean frequency are present at very short time scales $<2$ seconds and can exhibit highly complex spatio-temporal behaviour. Here we apply superstatistical data analysis techniques to measured frequency fluctuations in the Nordic Grid. We study the increment statistics and extract the relevant time scales and superstatistical distribution functions from the data. We show that different synchronous recordings of power-grid frequency have very distinct stochastic fluctuations with different types of superstatistics at different spatial locations, and with transitions from one superstatistics to another when the time lag of the increment statistics is changed.
We study the effect of localized attacks on a multiplex spatial network, where each layer is a network of communities. The system is considered functional when the nodes belong to the giant component in all the multiplex layers. The communities are o f linear size $zeta$, such that within them any pair of nodes are linked with same probability, and additionally nodes in nearby communities are linked with a different (typically smaller) probability. This model can represent an interdependent infrastructure system of cities where within the city there are many links while between cities there are fewer links. We develop an analytical method, similar to the finite element method applied to a network with communities, and verify our analytical results by simulations. We find, both by simulation and theory, that for different parameters of connectivity and spatiality --- there is a critical localized size of damage above which it will spread and the entire system will collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا