ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Prediction of Investor Interest: a Supervised Clustering Approach

73   0   0.0 ( 0 )
 نشر من قبل Baptiste Barreau
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel deep learning architecture suitable for the prediction of investor interest for a given asset in a given time frame. This architecture performs both investor clustering and modelling at the same time. We first verify its superior performance on a synthetic scenario inspired by real data and then apply it to two real-world databases, a publicly available dataset about the position of investors in Spanish stock market and proprietary data from BNP Paribas Corporate and Institutional Banking.


قيم البحث

اقرأ أيضاً

88 - Keke Zhao , Xing Zhao , Qi Cao 2021
Click-Through Rate (CTR) prediction plays an important role in many industrial applications, and recently a lot of attention is paid to the deep interest models which use attention mechanism to capture user interests from historical behaviors. Howeve r, most current models are based on sequential models which truncate the behavior sequences by a fixed length, thus have difficulties in handling very long behavior sequences. Another big problem is that sequences with the same length can be quite different in terms of time, carrying completely different meanings. In this paper, we propose a non-sequential approach to tackle the above problems. Specifically, we first represent the behavior data in a sparse key-vector format, where the vector contains rich behavior info such as time, count and category. Next, we enhance the Deep Interest Network to take such rich information into account by a novel attention network. The sparse representation makes it practical to handle large scale long behavior sequences. Finally, we introduce a multidimensional partition framework to mine behavior interactions. The framework can partition data into custom designed time buckets to capture the interactions among information aggregated in different time buckets. Similarly, it can also partition the data into different categories and capture the interactions among them. Experiments are conducted on two public datasets: one is an advertising dataset and the other is a production recommender dataset. Our models outperform other state-of-the-art models on both datasets.
Background: During the early stages of hospital admission, clinicians must use limited information to make diagnostic and treatment decisions as patient acuity evolves. However, it is common that the time series vital sign information from patients t o be both sparse and irregularly collected, which poses a significant challenge for machine / deep learning techniques to analyze and facilitate the clinicians to improve the human health outcome. To deal with this problem, We propose a novel deep interpolation network to extract latent representations from sparse and irregularly sampled time-series vital signs measured within six hours of hospital admission. Methods: We created a single-center longitudinal dataset of electronic health record data for all (n=75,762) adult patient admissions to a tertiary care center lasting six hours or longer, using 55% of the dataset for training, 23% for validation, and 22% for testing. All raw time series within six hours of hospital admission were extracted for six vital signs (systolic blood pressure, diastolic blood pressure, heart rate, temperature, blood oxygen saturation, and respiratory rate). A deep interpolation network is proposed to learn from such irregular and sparse multivariate time series data to extract the fixed low-dimensional latent patterns. We use k-means clustering algorithm to clusters the patient admissions resulting into 7 clusters. Findings: Training, validation, and testing cohorts had similar age (55-57 years), sex (55% female), and admission vital signs. Seven distinct clusters were identified. M Interpretation: In a heterogeneous cohort of hospitalized patients, a deep interpolation network extracted representations from vital sign data measured within six hours of hospital admission. This approach may have important implications for clinical decision-support under time constraints and uncertainty.
Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet pr ocess mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.
68 - Kristian Snyder 2020
Occupationally-induced back pain is a leading cause of reduced productivity in industry. Detecting when a worker is lifting incorrectly and at increased risk of back injury presents significant possible benefits. These include increased quality of li fe for the worker due to lower rates of back injury and fewer workers compensation claims and missed time for the employer. However, recognizing lifting risk provides a challenge due to typically small datasets and subtle underlying features in accelerometer and gyroscope data. A novel method to classify a lifting dataset using a 2D convolutional neural network (CNN) and no manual feature extraction is proposed in this paper; the dataset consisted of 10 subjects lifting at various relative distances from the body with 720 total trials. The proposed deep CNN displayed greater accuracy (90.6%) compared to an alternative CNN and multilayer perceptron (MLP). A deep CNN could be adapted to classify many other activities that traditionally pose greater challenges in industrial environments due to their size and complexity.
636 - Qi Feng , Man Luo , Zhaoyu Zhang 2021
We propose a deep signature/log-signature FBSDE algorithm to solve forward-backward stochastic differential equations (FBSDEs) with state and path dependent features. By incorporating the deep signature/log-signature transformation into the recurrent neural network (RNN) model, our algorithm shortens the training time, improves the accuracy, and extends the time horizon comparing to methods in the existing literature. Moreover, our algorithms can be applied to a wide range of applications such as state and path dependent option pricing involving high-frequency data, model ambiguity, and stochastic games, which are linked to parabolic partial differential equations (PDEs), and path-dependent PDEs (PPDEs). Lastly, we also derive the convergence analysis of the deep signature/log-signature FBSDE algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا