ﻻ يوجد ملخص باللغة العربية
Occupationally-induced back pain is a leading cause of reduced productivity in industry. Detecting when a worker is lifting incorrectly and at increased risk of back injury presents significant possible benefits. These include increased quality of life for the worker due to lower rates of back injury and fewer workers compensation claims and missed time for the employer. However, recognizing lifting risk provides a challenge due to typically small datasets and subtle underlying features in accelerometer and gyroscope data. A novel method to classify a lifting dataset using a 2D convolutional neural network (CNN) and no manual feature extraction is proposed in this paper; the dataset consisted of 10 subjects lifting at various relative distances from the body with 720 total trials. The proposed deep CNN displayed greater accuracy (90.6%) compared to an alternative CNN and multilayer perceptron (MLP). A deep CNN could be adapted to classify many other activities that traditionally pose greater challenges in industrial environments due to their size and complexity.
Most of the two-dimensional (2D) hydraulic/hydrodynamic models are still computationally too demanding for real-time applications. In this paper, an innovative modelling approach based on a deep convolutional neural network (CNN) method is presented
We train and validate a semi-supervised, multi-task LSTM on 57,675 person-weeks of data from off-the-shelf wearable heart rate sensors, showing high accuracy at detecting multiple medical conditions, including diabetes (0.8451), high cholesterol (0.7
Deep learning performs remarkably well on many time series analysis tasks recently. The superior performance of deep neural networks relies heavily on a large number of training data to avoid overfitting. However, the labeled data of many real-world
Obtaining accurate information about future traffic flows of all links in a traffic network is of great importance for traffic management and control applications. This research studies two particular problems in traffic forecasting: (1) capture the
Electroencephalography (EEG) is a complex signal and can require several years of training to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good featur