ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of young massive clusters triggered by cloud-cloud collisions in the Antennae Galaxies NGC 4038/NGC 4039

80   0   0.0 ( 0 )
 نشر من قبل Kisetsu Tsuge
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation mechanism of super star clusters (SSCs), a present-day analog of the ancient globulars, still remains elusive. The major merger, the Antennae galaxies is forming SSCs and is one of the primary targets to test the cluster formation mechanism. We reanalyzed the archival ALMA CO data of the Antennae and found three typical observational signatures of a cloud-cloud collision toward SSC B1 and other SSCs in the overlap region; i. two velocity components with $sim$100 km s$^{-1}$ velocity separation, ii. the bridge features connecting the two components, and iii. the complementary spatial distribution between them, lending support for collisions of the two components as a cluster formation mechanism. We present a scenario that the two clouds with 100 km s$^{-1}$ velocity separation collided, and SSCs having $sim$10$^6$-10$^7$ $M_{rm odot}$ were formed rapidly during the time scale. {We compared the present results with the recent studies of star forming regions in the Milky Way and the LMC, where the SSCs having $sim$10$^4$-10$^5$ $M_{rm odot}$ are located. As a result, we found that there is a positive correlation between the compressed gas pressure generated by collisions and the total stellar mass of SSC, suggesting that the pressure may be a key parameter in the SSC formation.

قيم البحث

اقرأ أيضاً

The Antennae Galaxies is one of the starbursts in major mergers. Tsuge et al. (2020) showed that the five giant molecular complexes in the Antennae Galaxies have signatures of cloud-cloud collisions based on the ALMA archival data at 60 pc resolution . In the present work we analyzed the new CO data toward the super star cluster (SSC) B1 at 14 pc resolution obtained with ALMA, and confirmed that two clouds show complementary distribution with a displacement of $sim$70 pc as well as the connecting bridge features between them. The complementary distribution shows a good correspondence with the theoretical collision model (Takahira et al. 2014), and indicates that SSC B1 having $sim$10$^{6}$ $M$$_{odot}$ was formed by the trigger of a cloud-cloud collision with a time scale of $sim$1Myr, which is consistent with the cluster age. It is likely that SSC B1 was formed from molecular gas of $sim$10$^{7}$ $M$$_{odot}$ with a star formation efficiency of $sim$10 % in 1 Myr. We identified a few places where additional clusters are forming. Detailed gas motion indicates stellar feedback in accelerating gas is not effective, while ionization plays a role in evacuating the gas around the clusters at a $sim$30-pc radius. The results have revealed the details of the parent gas where a cluster having mass similar to a globular is being formed.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components ha ve been discussed as the mechanism which triggered the massive star formation in W51A. In this paper, we report an observational study of the molecular clouds in W51A using the new 12CO, 13CO, and C18O (J=1-0) data covering a 1.4x1.0 degree region of W51A obtained with the Nobeyama 45-m telescope at 20 resolution. Our CO data resolved the four discrete velocity clouds at 50, 56, 60, and 68 km/s with sizes and masses of ~30 pc and 1.0-1.9x10^5 Msun. Toward the central part of the HII region complex G49.5-0.4, we identified four C18O clumps having sizes of ~1 pc and column densities of higher than 10^23 cm^-3, which are each embedded within the four velocity clouds. These four clumps are distributed close to each others within a small distance of 5 pc, showing a complementary distribution on the sky. In the position-velocity diagram, these clumps are connected with each others by bridge features with intermediate intensities. The high intensity ratios of 13CO (J=3-2/J=1-0) also indicates that these four clouds are associated with the HII regions. We also found these features in other HII regions in W51A. The timescales of the collisions are estimated to be several 0.1 Myrs as a crossing time of the clouds, which are consistent with the ages of the HII regions measured from the size of the HII regions in the 21 cm continuum emissions. We discuss the cloud-cloud collision scenario and massive star formation in W51A by comparing with the recent observational and theoretical studies of cloud-cloud collision.
The ACS and NICMOS have been used to obtain new HST images of NGC 4038/4039 (The Antennae). These new observations allow us to better differentiate compact star clusters from individual stars, based on both size and color. We use this ability to exte nd the cluster luminosity function by approximately two magnitudes over our previous WFPC2 results, and find that it continues as a single power law, dN/dL propto L^alpha with alpha=-2.13+/-0.07, down to the observational limit of Mv~-7. Similarly, the mass function is a single power law dN/dM propto M^beta with beta=-2.10+/-0.20 for clusters with ages t<3x10^8 yr, corresponding to lower mass limits that range from 10^4 to 10^5 Msun, depending on the age range of the subsample. Hence the power law indices for the luminosity and mass functions are essentially the same. The luminosity function for intermediate-age clusters (i.e., ~100-300 Myr old objects found in the loops, tails, and outer areas) shows no bend or turnover down to Mv~-6, consistent with relaxation-driven cluster disruption models which predict the turnover should not be observed until Mv~-4. An analysis of individual ~0.5-kpc sized areas over diverse environments shows good agreement between values of alpha and beta, similar to the results for the total population of clusters in the system. Several of the areas studied show evidence for age gradients, with somewhat older clusters appearing to have triggered the formation of younger clusters. The area around Knot B is a particularly interesting example, with an ~10-50 Myr old cluster of estimated mass ~10^6 Msun having apparently triggered the formation of several younger, more massive (up to 5x10^6 Msun) clusters along a dust lane.
50 - K. Y. Liow , C. L. Dobbs 2020
Young massive clusters (YMCs) are recently formed astronomical objects with unusually high star formation rates. We propose the collision of giant molecular clouds (GMCs) as a likely formation mechanism of YMCs, consistent with the YMC conveyor-belt formation mode concluded by other authors. We conducted smoothed particle hydrodynamical simulations of cloud-cloud collisions and explored the effect of the clouds collision speed, initial cloud density, and the level of cloud turbulence on the global star formation rate and the properties of the clusters formed from the collision. We show that greater collision speed, greater initial cloud density and lower turbulence increase the overall star formation rate and produce clusters with greater cluster mass. In general, collisions with relative velocity $gtrsim 25$ km/s, initial cloud density $gtrsim 250$ cm$^{-3}$, and turbulence of $approx 2.5$ km/s can produce massive clusters with properties resembling the observed Milky Way YMCs.
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigg er, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا