ﻻ يوجد ملخص باللغة العربية
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigger, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components ha
We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass ob
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin
We study effect of magnetic field on massive dense core formation in colliding unequal molecular clouds by performing magnetohydrodynamic simulations with sub-parsec resolution (0.015 pc) that can resolve the molecular cores. Initial clouds with the
Using the NANTEN2 Observatory, we carried out a molecular line study of high-mass star forming regions with reflection nebulae, NGC 2068 and NGC 2071, in Orion in the 13CO(J=2-1) transition. The 13CO distribution shows that there are two velocity com