ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive star formation in W51A triggered by cloud-cloud collisions

73   0   0.0 ( 0 )
 نشر من قبل Shinji Fujita
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components have been discussed as the mechanism which triggered the massive star formation in W51A. In this paper, we report an observational study of the molecular clouds in W51A using the new 12CO, 13CO, and C18O (J=1-0) data covering a 1.4x1.0 degree region of W51A obtained with the Nobeyama 45-m telescope at 20 resolution. Our CO data resolved the four discrete velocity clouds at 50, 56, 60, and 68 km/s with sizes and masses of ~30 pc and 1.0-1.9x10^5 Msun. Toward the central part of the HII region complex G49.5-0.4, we identified four C18O clumps having sizes of ~1 pc and column densities of higher than 10^23 cm^-3, which are each embedded within the four velocity clouds. These four clumps are distributed close to each others within a small distance of 5 pc, showing a complementary distribution on the sky. In the position-velocity diagram, these clumps are connected with each others by bridge features with intermediate intensities. The high intensity ratios of 13CO (J=3-2/J=1-0) also indicates that these four clouds are associated with the HII regions. We also found these features in other HII regions in W51A. The timescales of the collisions are estimated to be several 0.1 Myrs as a crossing time of the clouds, which are consistent with the ages of the HII regions measured from the size of the HII regions in the 21 cm continuum emissions. We discuss the cloud-cloud collision scenario and massive star formation in W51A by comparing with the recent observational and theoretical studies of cloud-cloud collision.

قيم البحث

اقرأ أيضاً

Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigg er, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
We study effect of magnetic field on massive dense core formation in colliding unequal molecular clouds by performing magnetohydrodynamic simulations with sub-parsec resolution (0.015 pc) that can resolve the molecular cores. Initial clouds with the typical gas density of the molecular clouds are immersed in various uniform magnetic fields. The turbulent magnetic fields in the clouds consistent with the observation by Crutcher et al. (2010) are generated by the internal turbulent gas motion before the collision, if the uniform magnetic field strength is 4.0 $mu$G. The collision speed of 10 km s$^{-1}$ is adopted, which is much larger than the sound speeds and the Alfv{e}n speeds of the clouds. We identify gas clumps with gas densities greater than 5 $times$ 10$^{-20}$ g cm$^{-3}$ as the dense cores and trace them throughout the simulations to investigate their mass evolution and gravitational boundness. We show that a greater number of massive, gravitationally bound cores are formed in the strong magnetic field (4.0 $mu$G) models than the weak magnetic field (0.1 $mu$G) models. This is partly because the strong magnetic field suppresses the spatial shifts of the shocked layer that should be caused by the nonlinear thin shell instability. The spatial shifts promote formation of low-mass dense cores in the weak magnetic field models. The strong magnetic fields also support low-mass dense cores against gravitational collapse. We show that the numbers of massive, gravitationally bound cores formed in the strong magnetic field models are much larger than the isolated, non-colliding cloud models, which are simulated for comparison. We discuss the implications of our numerical results on massive star formation.
We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass ob jects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the discs and their surrounding gas.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin g $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
The formation mechanism of super star clusters (SSCs), a present-day analog of the ancient globulars, still remains elusive. The major merger, the Antennae galaxies is forming SSCs and is one of the primary targets to test the cluster formation mecha nism. We reanalyzed the archival ALMA CO data of the Antennae and found three typical observational signatures of a cloud-cloud collision toward SSC B1 and other SSCs in the overlap region; i. two velocity components with $sim$100 km s$^{-1}$ velocity separation, ii. the bridge features connecting the two components, and iii. the complementary spatial distribution between them, lending support for collisions of the two components as a cluster formation mechanism. We present a scenario that the two clouds with 100 km s$^{-1}$ velocity separation collided, and SSCs having $sim$10$^6$-10$^7$ $M_{rm odot}$ were formed rapidly during the time scale. {We compared the present results with the recent studies of star forming regions in the Milky Way and the LMC, where the SSCs having $sim$10$^4$-10$^5$ $M_{rm odot}$ are located. As a result, we found that there is a positive correlation between the compressed gas pressure generated by collisions and the total stellar mass of SSC, suggesting that the pressure may be a key parameter in the SSC formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا