ترغب بنشر مسار تعليمي؟ اضغط هنا

MAT: Multi-Fingered Adaptive Tactile Grasping via Deep Reinforcement Learning

226   0   0.0 ( 0 )
 نشر من قبل Bohan Wu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vision-based grasping systems typically adopt an open-loop execution of a planned grasp. This policy can fail due to many reasons, including ubiquitous calibration error. Recovery from a failed grasp is further complicated by visual occlusion, as the hand is usually occluding the vision sensor as it attempts another open-loop regrasp. This work presents MAT, a tactile closed-loop method capable of realizing grasps provided by a coarse initial positioning of the hand above an object. Our algorithm is a deep reinforcement learning (RL) policy optimized through the clipped surrogate objective within a maximum entropy RL framework to balance exploitation and exploration. The method utilizes tactile and proprioceptive information to act through both fine finger motions and larger regrasp movements to execute stable grasps. A novel curriculum of action motion magnitude makes learning more tractable and helps turn common failure cases into successes. Careful selection of features that exhibit small sim-to-real gaps enables this tactile grasping policy, trained purely in simulation, to transfer well to real world environments without the need for additional learning. Experimentally, this methodology improves over a vision-only grasp success rate substantially on a multi-fingered robot hand. When this methodology is used to realize grasps from coarse initial positions provided by a vision-only planner, the system is made dramatically more robust to calibration errors in the camera-robot transform.

قيم البحث

اقرأ أيضاً

Using simulation to train robot manipulation policies holds the promise of an almost unlimited amount of training data, generated safely out of harms way. One of the key challenges of using simulation, to date, has been to bridge the reality gap, so that policies trained in simulation can be deployed in the real world. We explore the reality gap in the context of learning a contextual policy for multi-fingered robotic grasping. We propose a Grasping Objects Approach for Tactile (GOAT) robotic hands, learning to overcome the reality gap problem. In our approach we use human hand motion demonstration to initialize and reduce the search space for learning. We contextualize our policy with the bounding cuboid dimensions of the object of interest, which allows the policy to work on a more flexible representation than directly using an image or point cloud. Leveraging fingertip touch sensors in the hand allows the policy to overcome the reduction in geometric information introduced by the coarse bounding box, as well as pose estimation uncertainty. We show our learned policy successfully runs on a real robot without any fine tuning, thus bridging the reality gap.
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.
Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help di splace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu
Artificial touch would seem well-suited for Reinforcement Learning (RL), since both paradigms rely on interaction with an environment. Here we propose a new environment and set of tasks to encourage development of tactile reinforcement learning: lear ning to type on a braille keyboard. Four tasks are proposed, progressing in difficulty from arrow to alphabet keys and from discrete to continuous actions. A simulated counterpart is also constructed by sampling tactile data from the physical environment. Using state-of-the-art deep RL algorithms, we show that all of these tasks can be successfully learnt in simulation, and 3 out of 4 tasks can be learned on the real robot. A lack of sample efficiency currently makes the continuous alphabet task impractical on the robot. To the best of our knowledge, this work presents the first demonstration of successfully training deep RL agents in the real world using observations that exclusively consist of tactile images. To aid future research utilising this environment, the code for this project has been released along with designs of the braille keycaps for 3D printing and a guide for recreating the experiments. A brief video summary is also available at https://youtu.be/eNylCA2uE_E.
This paper focuses on the problem of learning 6-DOF grasping with a parallel jaw gripper in simulation. We propose the notion of a geometry-aware representation in grasping based on the assumption that knowledge of 3D geometry is at the heart of inte raction. Our key idea is constraining and regularizing grasping interaction learning through 3D geometry prediction. Specifically, we formulate the learning of deep geometry-aware grasping model in two steps: First, we learn to build mental geometry-aware representation by reconstructing the scene (i.e., 3D occupancy grid) from RGBD input via generative 3D shape modeling. Second, we learn to predict grasping outcome with its internal geometry-aware representation. The learned outcome prediction model is used to sequentially propose grasping solutions via analysis-by-synthesis optimization. Our contributions are fourfold: (1) To best of our knowledge, we are presenting for the first time a method to learn a 6-DOF grasping net from RGBD input; (2) We build a grasping dataset from demonstrations in virtual reality with rich sensory and interaction annotations. This dataset includes 101 everyday objects spread across 7 categories, additionally, we propose a data augmentation strategy for effective learning; (3) We demonstrate that the learned geometry-aware representation leads to about 10 percent relative performance improvement over the baseline CNN on grasping objects from our dataset. (4) We further demonstrate that the model generalizes to novel viewpoints and object instances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا