ﻻ يوجد ملخص باللغة العربية
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.
Vision-based grasping systems typically adopt an open-loop execution of a planned grasp. This policy can fail due to many reasons, including ubiquitous calibration error. Recovery from a failed grasp is further complicated by visual occlusion, as the
We present a method for efficient learning of control policies for multiple related robotic motor skills. Our approach consists of two stages, joint training and specialization training. During the joint training stage, a neural network policy is tra
Using simulation to train robot manipulation policies holds the promise of an almost unlimited amount of training data, generated safely out of harms way. One of the key challenges of using simulation, to date, has been to bridge the reality gap, so
Object grasping in cluttered scenes is a widely investigated field of robot manipulation. Most of the current works focus on estimating grasp pose from point clouds based on an efficient single-shot grasp detection network. However, due to the lack o
6D grasping in cluttered scenes is a longstanding problem in robotic manipulation. Open-loop manipulation pipelines may fail due to inaccurate state estimation, while most end-to-end grasping methods have not yet scaled to complex scenes with obstacl