ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement growth after inhomogenous quenches

115   0   0.0 ( 0 )
 نشر من قبل Tibor Rakovszky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the growth of entanglement in quantum systems with a conserved quantity exhibiting diffusive transport, focusing on how initial inhomogeneities are imprinted on the entropy. We propose a simple effective model, which generalizes the minimal cut picture of textit{Jonay et al.} in such a way that the `line tension of the cut depends on the local entropy density. In the case of noisy dynamics, this is described by a Kardar-Parisi-Zhang (KPZ) equation coupled to a diffusing field. We investigate the resulting dynamics and find that initial inhomogeneities of the conserved charge give rise to features in the entanglement profile, whose width and height both grow in time as $proptosqrt{t}$. In particular, for a domain wall quench, diffusion restricts entanglement growth to be $S_text{vN} lesssim sqrt{t}$. We find that for charge density wave initial states, these features in the entanglement profile are present even after the charge density has equilibrated. Our conclusions are supported by numerical results on random circuits and deterministic spin chains.



قيم البحث

اقرأ أيضاً

The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy chan ges with small deformations of the entangling surface. This leads to the notion of entanglement susceptibilities. These relate the variation of the EE to the geometric variation of the subregion. We determine the form of the leading entanglement susceptibilities for a large class of scale invariant states, such as groundstates of conformal field theories, and systems with Lifshitz scaling, which includes fixed points governed by disorder. We then use the susceptibilities to derive the universal contributions that arise due to non-smooth features in the entangling surface: corners in 2d, as well as cones and trihedral vertices in 3d. We finally discuss the generalization to Renyi entropies.
Quantum field theories have a rich structure in the presence of boundaries. We study the groundstates of conformal field theories (CFTs) and Lifshitz field theories in the presence of a boundary through the lens of the entanglement entropy. For a fam ily of theories in general dimensions, we relate the universal terms in the entanglement entropy of the bulk theory with the corresponding terms for the theory with a boundary. This relation imposes a condition on certain boundary central charges. For example, in 2 + 1 dimensions, we show that the corner-induced logarithmic terms of free CFTs and certain Lifshitz theories are simply related to those that arise when the corner touches the boundary. We test our findings on the lattice, including a numerical implementation of Neumann boundary conditions. We also propose an ansatz, the boundary Extensive Mutual Information model, for a CFT with a boundary whose entanglement entropy is purely geometrical. This model shows the same bulk-boundary connection as Dirac fermions and certain supersymmetric CFTs that have a holographic dual. Finally, we discuss how our results can be generalized to all dimensions as well as to massive quantum field theories.
Signal propagation in the non equilibirum evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determ ine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of excitations in an appropriately defined generalized Gibbs ensemble.
We propose that the properties of the capacity of entanglement (COE) in gapless systems can efficiently be investigated through the use of the distribution of eigenvalues of the reduced density matrix (RDM). The COE is defined as the fictitious heat capacity calculated from the entanglement spectrum. Its dependence on the fictitious temperature can reflect the low-temperature behavior of the physical heat capacity, and thus provide a useful probe of gapless bulk or edge excitations of the system. Assuming a power-law scaling of the COE with an exponent $alpha$ at low fictitious temperatures, we derive an analytical formula for the distribution function of the RDM eigenvalues. We numerically test the effectiveness of the formula in relativistic free scalar boson in two spatial dimensions, and find that the distribution function can detect the expected $alpha=3$ scaling of the COE much more efficiently than the raw data of the COE. We also calculate the distribution function in the ground state of the half-filled Landau level with short-range interactions, and find a better agreement with the $alpha=2/3$ formula than with the $alpha=1$ one, which indicates a non-Fermi-liquid nature of the system.
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduce d density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate re-scaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the non-perturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا