ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost Perfect Metals in One Dimension

45   0   0.0 ( 0 )
 نشر من قبل Chaitanya Murthy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a one-dimensional quantum wire with as few as 2 channels of interacting fermions can host metallic states of matter that are stable against all perturbations up to $q^text{th}$-order in fermion creation/annihilation operators for any fixed finite $q$. The leading relevant perturbations are thus complicated operators that are expected to modify the physics only at very low energies, below accessible temperatures. The stability of these non-Fermi liquid fixed points is due to strong interactions between the channels, which can (but need not) be chosen to be purely repulsive. Our results might enable elementary physical realizations of these phases.

قيم البحث

اقرأ أيضاً

We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering proc esses involving large momentum transfers perpendicular to the chains can completely destroy the warping of the true Fermi surface, leading to a confined state where the renormalized interchain hopping vanishes and a coherent motion perpendicular to the chains is impossible.
105 - Shriya Pai , Michael Pretko 2019
Recent work has shown that two seemingly different physical mechanisms, namely fracton behavior and confinement, can give rise to non-ergodicity in one-dimensional quantum many-body systems. In this work, we demonstrate an intrinsic link between thes e two mechanisms by studying the dynamics of one-dimensional confining theories, such as a U(1) gauge theory and a quantum Ising model. We show that, within certain parameter regimes, these models exhibit effective fracton dynamics, characterized by immobility of stable single-particle excitations and free motion of dipolar bound states. By perturbatively integrating out the linearly confining field, we obtain an effective fracton Hamiltonian for the confined charges which exhibits conservation of dipole moment. We discuss an intuitive understanding of these results in terms of the motion of the confining strings, leading to potential extensions to higher dimensions. We thereby interpret recent observations of nonthermal eigenstates and glassy dynamics in confining theories in terms of corresponding results in the fracton literature.
We perform a numerical study of a spin-1/2 model with $mathbb{Z}_2 times mathbb{Z}_2$ symmetry in one dimension which demonstrates an interesting similarity to the physics of two-dimensional deconfined quantum critical points (DQCP). Specifically, we investigate the quantum phase transition between Ising ferromagnetic and valence bond solid (VBS) symmetry-breaking phases. Working directly in the thermodynamic limit using uniform matrix product states, we find evidence for a direct continuous phase transition that lies outside of the Landau-Ginzburg-Wilson paradigm. In our model, the continuous transition is found everywhere on the phase boundary. We find that the magnetic and VBS correlations show very close power law exponents, which is expected from the self-duality of the parton description of this DQCP. Critical exponents vary continuously along the phase boundary in a manner consistent with the predictions of the field theory for this transition. We also find a regime where the phase boundary splits, as suggested by the theory, introducing an intermediate phase of coexisting ferromagnetic and VBS order parameters. Interestingly, we discover a transition involving this coexistence phase which is similar to the DQCP, being also disallowed by Landau-Ginzburg-Wilson symmetry-breaking theory.
42 - C.M. Varma 2013
The loop-current state discovered in under-doped cuprates is characterized by a vector ${bf Omega}$ which has four possible orientations which correspond to different domains of order in a perfect sample. Since translational symmetry remains unchange d in the pure limit, no gap occurs at the chemical potential. On the other hand Scanning tunneling microscopy (STM) has revealed that the magnitude of the pseudo-gap in under-doped cuprates varies spatially and is correlated with disorder. For disorder coupling also to the direction of ${bf Omega}$, there can only be a finite temperature dependent static correlation length for the loop-current state below the ordering temperature of the pure problem. It is shown that, in this situation, singular forward scattering of fermions for large correlation lengths induces an angle dependent pseudo-gap in the single-particle spectral function near the chemical potential. The peaks in the spectral function at the fermi-vectors are away from the chemical potential proportionally to the square of the average loop order parameter measurable by polarized neutron scattering. This result is tested. Due to the finite correlation length there always exist low frequency excitations at long wavelength at all temperatures in the ordered phase. Such fluctuations motionally average over the shifts in frequencies of local probes such as NMR and muon resonance expected for a truly static order.
We introduce the topological mirror excitonic insulator as a new type of interacting topological crystalline phase in one dimension. Its mirror-symmetry-protected topological properties are driven by exciton physics, and it manifests in the quantized bulk polarization and half-charge modes on the boundary. And the bosonization analysis is performed to demonstrate its robustness against strong correlation effects in one dimension. Besides, we also show that Rashba nanowires and Dirac semimetal nanowires could provide ideal experimental platforms to realize this new topological mirror excitonic insulating state. Its experimental consequences, such as quantized tunneling conductance in the tunneling measurement, are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا