ﻻ يوجد ملخص باللغة العربية
We perform a numerical study of a spin-1/2 model with $mathbb{Z}_2 times mathbb{Z}_2$ symmetry in one dimension which demonstrates an interesting similarity to the physics of two-dimensional deconfined quantum critical points (DQCP). Specifically, we investigate the quantum phase transition between Ising ferromagnetic and valence bond solid (VBS) symmetry-breaking phases. Working directly in the thermodynamic limit using uniform matrix product states, we find evidence for a direct continuous phase transition that lies outside of the Landau-Ginzburg-Wilson paradigm. In our model, the continuous transition is found everywhere on the phase boundary. We find that the magnetic and VBS correlations show very close power law exponents, which is expected from the self-duality of the parton description of this DQCP. Critical exponents vary continuously along the phase boundary in a manner consistent with the predictions of the field theory for this transition. We also find a regime where the phase boundary splits, as suggested by the theory, introducing an intermediate phase of coexisting ferromagnetic and VBS order parameters. Interestingly, we discover a transition involving this coexistence phase which is similar to the DQCP, being also disallowed by Landau-Ginzburg-Wilson symmetry-breaking theory.
We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject to a random Heisenberg spin exchange interactions between any pair of sites and a constraint of no double occupancy. A perturbative renormalization g
Noethers theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noethers theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition bey
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor
In this paper we discuss the N$acute{e}$el and Kekul$acute{e}$ valence bond solids quantum criticality in graphene Dirac semimetal. Considering the quartic four-fermion interaction $g(bar{psi}_iGamma_{ij}psi_j)^2$ that contains spin,valley, and subla
Deconfined quantum critical point was proposed as a second-order quantum phase transition between two broken symmetry phases beyond the Landau-Ginzburg-Wilson paradigm. However, numerical studies cannot completely rule out a weakly first-order transi