ﻻ يوجد ملخص باللغة العربية
Recent work has shown that two seemingly different physical mechanisms, namely fracton behavior and confinement, can give rise to non-ergodicity in one-dimensional quantum many-body systems. In this work, we demonstrate an intrinsic link between these two mechanisms by studying the dynamics of one-dimensional confining theories, such as a U(1) gauge theory and a quantum Ising model. We show that, within certain parameter regimes, these models exhibit effective fracton dynamics, characterized by immobility of stable single-particle excitations and free motion of dipolar bound states. By perturbatively integrating out the linearly confining field, we obtain an effective fracton Hamiltonian for the confined charges which exhibits conservation of dipole moment. We discuss an intuitive understanding of these results in terms of the motion of the confining strings, leading to potential extensions to higher dimensions. We thereby interpret recent observations of nonthermal eigenstates and glassy dynamics in confining theories in terms of corresponding results in the fracton literature.
Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in rea
We offer a fractonic perspective on a familiar observation -- a flat sheet of paper can be folded only along a straight line if one wants to avoid the creation of additional creases or tears. Our core underlying technical result is the establishment
Fractons are a type of emergent quasiparticle which cannot move freely in isolation, but can easily move in bound pairs. Similar phenomenology is found in boson-affected hopping models, encountered in the study of polaron systems and hole-doped Ising
We derive an effective field theory for a type-II fracton starting from the Haah code on the lattice. The effective topological theory is not given exclusively in terms of an action; it must be supplemented with a condition that selects physical stat
Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricte