ﻻ يوجد ملخص باللغة العربية
Ultra high energy neutrinos ($E_ u > 10^{16.5}$eV$)$ are efficiently measured via radio signals following a neutrino interaction in ice. An antenna placed $mathcal{O}$(15 m) below the ice surface will measure two signals for the vast majority of events (90% at $E_ u$=$10^{18}$eV$)$: a direct pulse and a second delayed pulse from a reflection off the ice surface. This allows for a unique identification of neutrinos against backgrounds arriving from above. Furthermore, the time delay between the direct and reflected signal (DnR) correlates with the distance to the neutrino interaction vertex, a crucial quantity to determine the neutrino energy. In a simulation study, we derive the relation between time delay and distance and study the corresponding experimental uncertainties in estimating neutrino energies. We find that the resulting contribution to the energy resolution is well below the natural limit set by the unknown inelasticity in the initial neutrino interaction. We present an in-situ measurement that proves the experimental feasibility of this technique. Continuous monitoring of the local snow accumulation in the vicinity of the transmit and receive antennas using this technique provide a precision of $mathcal{O}$(1 mm) in surface elevation, which is much better than that needed to apply the DnR technique to neutrinos.
Starting in summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) will search for astrophysical neutrinos at energies >10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an
While the radio detection of cosmic rays has advanced to a standard method in astroparticle physics, the radio detection of neutrinos is just about to start its full bloom. The successes of pilot-arrays have to be accompanied by the development of mo
The detection of the radio emission following a neutrino interaction in ice is a promising technique to obtain significant sensitivities to neutrinos with energies above PeV. The detectable radio emission stems from particle showers in the ice. So fa
We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-
Available estimates for the energy resolution of DUNE vary by as much as a factor of four. To address this controversy, and to connect the resolution to the underlying physical processes, we build an independent simulation pipeline for neutrino event