ﻻ يوجد ملخص باللغة العربية
The detection of the radio emission following a neutrino interaction in ice is a promising technique to obtain significant sensitivities to neutrinos with energies above PeV. The detectable radio emission stems from particle showers in the ice. So far, detector simulations have considered only the radio emission from the primary interaction of the neutrino. For this study, existing simulation tools have been extended to cover secondary interactions from muons and taus. We find that secondary interactions of both leptons add up to 25% to the effective volume of neutrino detectors. Also, muon and tau neutrinos can create several detectable showers, with the result that double signatures do not constitute an exclusive signature for tau neutrinos. We also find that the background of atmospheric muons from cosmic rays is non-negligible for in-ice arrays and that an air shower veto should be considered helpful for radio detectors.
Starting in summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) will search for astrophysical neutrinos at energies >10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an
Ultra high energy neutrinos ($E_ u > 10^{16.5}$eV$)$ are efficiently measured via radio signals following a neutrino interaction in ice. An antenna placed $mathcal{O}$(15 m) below the ice surface will measure two signals for the vast majority of even
A point-like source of ~TeV gamma-rays has recently been seen towards the Galactic center by HESS and other air Cerenkov telescopes. In recent work (Ballantyne et al. 2007), we demonstrated that these gamma-rays can be attributed to high-energy proto
For a suite of fourteen core-collapse models during the dynamical first second after bounce, we calculate the detailed neutrino light curves expected in the underground neutrino observatories Super-Kamiokande, DUNE, JUNO, and IceCube. These results a
Several supersonic runaway pulsar wind nebulae (sPWNe) with jet-like extended structures have been recently discovered in X-rays. If these structures are the product of electrons escaping the system and diffusing into the surrounding interstellar med