ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the energy resolution of liquid argon neutrino detectors

73   0   0.0 ( 0 )
 نشر من قبل Alexander Friedland
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Available estimates for the energy resolution of DUNE vary by as much as a factor of four. To address this controversy, and to connect the resolution to the underlying physical processes, we build an independent simulation pipeline for neutrino events in liquid argon, combining the public tools GENIE and FLUKA. Using this pipeline, we first characterize the channels of non-hermeticity of DUNE, including subthreshold particles, charge recombination, and nuclear breakup. Particular attention is paid to the role of neutrons, which are responsible for a large fraction of missing energy in all channels. Next, we determine energy resolution, by quantifying event-to-event stochastic fluctuations in missing energy. This is done for several sets of assumptions about the reconstruction performance, including those available in the literature. The resulting migration matrices, connecting true and reconstructed neutrino energies, are presented. Finally, we quantify the impact of different improvements on the experimental performance. For example, we show that dropping particle identification information degrades the resolution by a factor of two, while omitting charge deposits from de-excitation gammas worsens it by about 25%. In the future, this framework can be used to assess the impact of cross section uncertainties on the oscillation sensitivity.



قيم البحث

اقرأ أيضاً

Thorough modeling of the physics involved in liquid argon calorimetry is essential for accurately predicting the performance of DUNE and optimizing its design and analysis pipeline. At the fundamental level, it is essential to quantify the detector r esponse to individual hadrons---protons, charged pions, and neutrons---at different injection energies. We report such a simulation, analyzed under different assumptions about event reconstruction, such as particle identification and neutron detection. The role of event containment is also quantified. The results of this simulation can help inform the ProtoDUNE test-beam data analysis, while also providing a framework for assessing the impact of various cross section uncertainties.
132 - Sophie Berkman 2020
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the texttt{LArSoft}xspace framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into texttt{LArSoft}xspace so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented.
Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (Wea kly Interacting Massive Particles or WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the applications of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.
A prototype of Multi-Wire Proportional Chambers (MWPC) has been fabricated for the study of its various characteristics. The detector contains gold-coated tungsten wires (20 $mu m$ diameter) on the anode frame, with a pitch of 2.8 mm. The gap between the anode and the cathode is 3 mm and the gap between anode and read-out is also 3 mm. Detailed study of MWPC in terms of gain, energy and timing resolution and efficiency measurements have been performed. The detector has been operated using Ar/CO$_{2}$ gas mixtures with 70:30 and 90:10 ratio. Energy spectrum of $^{55}$Fe X-ray source is obtained for the detector. The gain and energy resolution of the detector were calculated using X-ray spectrum. Time resolution is obtained $sim$10 ns.
The electron scattering has been a vital tool to study the properties of the target nucleus for over five decades. Though, the particular interest on $^{40}$Ar nucleus stemmed from the progress in the accelerator-based neutrino-oscillation experiment s. The complexity of nuclei comprising the detectors and their weak response turned out to be one of the major hurdles in the quest of achieving unprecedented precision in these experiments. The challenges are further magnified by the use of Liquid Argon Time Projection Chambers (LArTPCs) in the short- (SBN) and long-baseline (DUNE) neutrino program, with almost non-existence electron-argon scattering data and hence with no empirical basis to test and develop nuclear models for $^{40}$Ar. In light of these challenges, an electron-argon experiment, E12-14-012, was proposed at Jefferson Lab. The experiment has recently successfully completed collecting data for $(e,ep)$ and $(e,e)$ processes, not just on $^{40}$Ar but also on $^{48}$Ti, and $^{12}$C targets. While the analysis is running with full steam, in this contribution, we present a brief overview of the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا