ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference for SDE models via Approximate Bayesian Computation

156   0   0.0 ( 0 )
 نشر من قبل Umberto Picchini
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Umberto Picchini




اسأل ChatGPT حول البحث

Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to model e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.

قيم البحث

اقرأ أيضاً

We propose a framework for Bayesian non-parametric estimation of the rate at which new infections occur assuming that the epidemic is partially observed. The developed methodology relies on modelling the rate at which new infections occur as a functi on which only depends on time. Two different types of prior distributions are proposed namely using step-functions and B-splines. The methodology is illustrated using both simulated and real datasets and we show that certain aspects of the epidemic such as seasonality and super-spreading events are picked up without having to explicitly incorporate them into a parametric model.
The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article we consider the use of Bayesian nonparametric approach es to analysing data from disease outbreaks. Specifically we focus on methods for estimating the infection process in simple models under the assumption that this process has an explicit time-dependence.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based cluster ing for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary st atistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to construct effective summary statistics. In this paper we explore the possibility of automating the process of constructing summary statistics by training deep neural networks to predict the parameters from artificially generated data: the resulting summary statistics are approximately posterior means of the parameters. With minimal model-specific tuning, our method constructs summary statistics for the Ising model and the moving-average model, which match or exceed theoretically-motivated summary statistics in terms of the accuracies of the resulting posteriors.
In recent years dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However it is often computationally unfeasible to apply exact statistical methodologies in the context of large datasets a nd complex models. This paper considers a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An Approximate Bayesian Computation (ABC) MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm uses simulations of subsamples from the assumed data generating model as well as a so-called early rejection strategy to speed up computations in the ABC-MCMC sampler. Using a considerate amount of subsamples does not seem to degrade the quality of the inferential results for the considered applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered setup. Finally the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general and not limited to the exemplified model and data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا