ﻻ يوجد ملخص باللغة العربية
Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parameters in a fully probabilistic model, propagating all sources of uncertainty in inference, makes the Bayesian modeling framework more attractive and powerful than classical methods for approaching the image sensing model. A feasible correspondence of noise parameters to their expected theoretical behaviors and well calibrated posterior predictive distributions with a small root mean square error for model predictions have been achieved in this study, thus showing that the proposed model accurately approximates the image sensing model. The Bayesian approach could be extended to formulate further components aimed at identifying even more specific parameters of the imaging process.
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migra
The use of accelerometers in wildlife tracking provides a fine-scale data source for understanding animal behavior and decision-making. Current methods in movement ecology focus on behavior as a driver of movement mechanisms. Our Markov model is a fl
In this paper, we study porous media flows in heterogeneous stochastic media. We propose an efficient forward simulation technique that is tailored for variational Bayesian inversion. As a starting point, the proposed forward simulation technique dec
The Banana Bunchy Top Virus (BBTV) is one of the most economically important vector-borne banana diseases throughout the Asia-Pacific Basin and presents a significant challenge to the agricultural sector. Current models of BBTV are largely determinis