ﻻ يوجد ملخص باللغة العربية
The only way neutron matter can couple to the electromagnetic field is through an anomalous coupling, which plays an important role in the thermodynamics of pure neutron matter. Such theories are, however, perturbatively non-renormalisable, which presents a difficulty in terms of the unambiguous treatment of the divergencies. Here we show that despite this, an unambiguous expression can be obtained for the vacuum energy contribution to the grand canonical potential in the case of a constant magnetic field. We find that this contribution is quite small, which justifies the no-sea approximation usually made. We also discuss the density and temperature dependence of the full grand canonical potential.
Using the Hellmann--Feynman theorem we analyze the contribution of the different terms of the nucleon-nucleon interaction to the spin symmetry energy of neutron matter. The analysis is performed within the microscopic Brueckner--Hartree--Fock approac
The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A s
The thermal evolution of neuron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transfered momentum, can play a major role in the emission and pr
We present a systematic study of disappearance of flow i.e. balance energy $E_{bal}$ for an isotopic series of Ca with N/Z varying from 1 to 2 for different density dependences of symmetry energies. We also extend this study for asymmetric reactions having radioactive projectile and stable target.
Because of thermal expansion and residual interactions, hot nuclear fragments produced in multifragmentation reactions may have lower nucleon density than the equilibrium density of cold nuclei. In terms of liquid-drop model this effect can be taken