ترغب بنشر مسار تعليمي؟ اضغط هنا

Elementary excitations in homogeneous superfluid neutron star matter: Role of the proton component

60   0   0.0 ( 0 )
 نشر من قبل Camille Ducoin
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal evolution of neuron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transfered momentum, can play a major role in the emission and propagation of neutrinos. In this paper, we focus on the density modes associated with the proton component in the homogeneous matter of the outer core of neutron stars (at density between one and three times the nuclear saturation density, where the baryonic constituants are expected to be neutrons and protons). In this region, it is predicted that the protons are superconductor. We study the respective roles of the proton pairing and Coulomb interaction in determining the properties of the modes associated with the proton component. This study is performed in the framework of the Random Phase Approximation, generalized in order to describe the response of a superfluid system.The formalism we use ensures that the Generalized Wards Identities are satisfied. An important conclusion of this work is the presence of a pseudo-Goldstone mode associated with the proton superconductor in neutron-star matter. Indeed, the Goldstone mode, which characterizes a pure superfluid, is suppressed in usual superconductors due to the long-range Coulomb interaction, which only allows a plasmon mode. However, for the proton component of stellar matter, the Coulomb field is screened by the electrons and a pseudo-Goldstone mode occurs, with a velocity increased by the Coulomb interaction.

قيم البحث

اقرأ أيضاً

We study the collective density modes which can affect neutron-star thermodynamics in the baryonic density range between nuclear saturation ($rho_0$) and $3rho_0$. In this region, the expected constituents of neutron-star matter are mainly neutrons, protons and electrons ($npe$ matter), under the constraint of beta equilibrium. The elementary excitations of this $npe$ medium are studied in the RPA framework. We emphasize the effect of Coulomb interaction, in particular the electron screening of the proton plasmon mode. For the treatment of the nuclear interaction, we compare two modern Skyrme forces and a microscopic approach. The importance of the nucleon effective mass is observed.
We study the possible collective plasma modes which can affect neutron-star thermodynamics and different elementary processes in the baryonic density range between nuclear saturation ($rho_0$) and $3rho_0$. In this region, the expected constituents o f neutron-star matter are mainly neutrons, protons, electrons and muons ($npemu$ matter), under the constraint of beta equilibrium. The elementary plasma excitations of the $pemu$ three-fluid medium are studied in the RPA framework. We emphasize the relevance of the Coulomb interaction among the three species, in particular the interplay of the electron and muon screening in suppressing the possible proton plasma mode, which is converted into a sound-like mode. The Coulomb interaction alone is able to produce a variety of excitation branches and the full spectral function shows a rich structure at different energy. The genuine plasmon mode is pushed at high energy and it contains mainly an electron component with a substantial muon component, which increases with density. The plasmon is undamped for not too large momentum and is expected to be hardly affected by the nuclear interaction. All the other branches, which fall below the plasmon, are damped or over-damped.
79 - W. Zuo , Z. H. Li , G. C. Lu 2004
We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the $^1S_0$ channel in $beta$-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron $^1S_0$ pair ing gap, but it suppresses strongly the proton $^1S_0$ superfluidity in $beta$-stable neutron star matter.
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of ene rgy is obtained in the Wigner- Seitz approximation of spherically symmetric cell. The analysis of three different nuclear models suggests that the proton localization is likely to take place in the interior of neutron star.
203 - Wenmei Guo , J. M. Dong , X. Shang 2018
The onset of 1S0 proton spin-singlet pairing in neutron-star matter is studied in the framework of the BCS theory including medium polarization effects. The strong three-body coupling of the diproton pairs with the dense neutron environment and the s elf-energy effects severely reduce the gap magnitude, so to reshape the scenario of the proton superfluid phase inside the star. The vertex corrections due to the medium polarization are attractive in all isospin-asymmetry range at low density and tend to favor the pairing in that channel. However quantitative estimates of their effect on the energy gap do not give significant changes. Implications of the new scenario on the role of pairing in neutron-star cooling is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا