ﻻ يوجد ملخص باللغة العربية
The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A sizeable suppression of the energy gap is driven by the quasi-particle strength around the Fermi surface.
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neu
We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the $^1S_0$ channel in $beta$-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron $^1S_0$ pair
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid criti
The nucleon-nucleon correlation between nucleons leads to the Fermi surface depletion measured by a $Z$-factor in momentum distribution of dense nuclear matter. The roles of the Fermi surface depletion effect ($Z$-factor effect) and its quenched neut
The 1S0 pairing gap associated with the inner crust of a neutron star is calculated, taking into account the coexistence of the nuclear lattice with the sea of free neutrons (finite size effects), as well as medium polarization effects associated wit