ﻻ يوجد ملخص باللغة العربية
The recently developed formalism of nonlinear fluctuating hydrodynamics (NLFH) has been instrumental in unraveling many new dynamical universality classes in coupled driven systems with multiple conserved quantities. In principle, this formalism requires knowledge of the exact expression of locally conserved current in terms of local density of the conserved components. However, for most nonequilibrium systems an exact expression is not available and it is important to know what happens to the predictions of NLFH in these cases. We address this question for the first time here in a system with coupled time evolution of sliding particles on a fluctuating energy landscape. In the disordered phase this system shows short-ranged correlations, this system shows short-ranged correlations, the exact form of which is not known, and so the exact expression for current cannot be obtained. We use approximate expressions based on mean-field theory and corrections to it, to test the prediction of NLFH using numerical simulations. In this process we also discover important finite size effects and show how they affect the predictions of NLFH. We find that our system is rich enough to show a large variety of universality classes. From our analytics and simulations we have been able to find parameter values which lead to diffusive, Kardar-Parisi-Zhang (KPZ), $5/3 $ Levy and modified KPZ universality classes. Interestingly, the scaling function in the modified KPZ case turns out to be close to the Prahofer-Spohn function which is known to describe usual KPZ scaling. Our analytics also predict the golden mean and the $3/2$ Levy universality classes within our model but our simulations could not verify this, perhaps due to strong finite size effects.
Non-equilibrium Markov State Modeling (MSM) has recently been proposed [Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction from a long steady state atomistic simulation: the approach builds a small
We study the early time and coarsening dynamics in the Light-Heavy model, a system consisting of two species of particles ($light$ and $heavy$) coupled to a fluctuating surface (described by tilt fields). The dynamics of particles and tilts are coupl
Starting from the well-known field theory for directed percolation, we describe an evolving population, near extinction, in an environment with its own nontrivial spatio-temporal dynamics. Here, we consider the special case where the environment foll
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling dela
We study the statistical mechanics of a single active slider on a fluctuating interface, by means of numerical simulations and theoretical arguments. The slider, which moves by definition towards the interface minima, is active as it also stimulates