ﻻ يوجد ملخص باللغة العربية
We study the statistical mechanics of a single active slider on a fluctuating interface, by means of numerical simulations and theoretical arguments. The slider, which moves by definition towards the interface minima, is active as it also stimulates growth of the interface. Even though such a particle has no counterpart in thermodynamic systems, active sliders may provide a simple model for ATP-dependent membrane proteins that activate cytoskeletal growth. We find a wide range of dynamical regimes according to the ratio between the timescales associated with the slider motion and the interface relaxation. If the interface dynamics is slow, the slider behaves like a random walker in a random envinronment which, furthermore, is able to escape environmental troughs by making them grow. This results in different dynamic exponens to the interface and the particle: the former behaves as an Edward-Wilkinson surface with dynamic exponent 2 whereas the latter has dynamic exponent 3/2. When the interface is fast, we get sustained ballistic motion with the particle surfing a membrane wave created by itself. However, if the interface relaxes immediately (i.e., it is infinitely fast), particle motion becomes symmetric and goes back to diffusive. Due to such a rich phenomenology, we propose the active slider as a toy model of fundamental interest in the field of active membranes and, generally, whenever the system constituent can alter the environment by spending energy.
We study pattern formation, fluctuations and scaling induced by a growth-promoting active walker on an otherwise static interface. Active particles on an interface define a simple model for energy consuming proteins embedded in the plasma membrane, r
These lectures were prepared for the 2014 PCMI graduate summer school and were designed to be a lightweight introduction to statistical mechanics for mathematicians. The applications feature some of the themes of the summer school: sphere packings and tilings.
We review the field of the glass transition, glassy dynamics and aging from a statistical mechanics perspective. We give a brief introduction to the subject and explain the main phenomenology encountered in glassy systems, with a particular emphasis
For a given thermodynamic system, and a given choice of coarse-grained state variables, the knowledge of a force-flux constitutive law is the basis for any nonequilibrium modeling. In the first paper of this series we established how, by a generaliza
This work describes a simple agent model for the spread of an epidemic outburst, with special emphasis on mobility and geographical considerations, which we characterize via statistical mechanics and numerical simulations. As the mobility is decrease