ﻻ يوجد ملخص باللغة العربية
Modern object detectors can rarely achieve short training time, fast inference speed, and high accuracy at the same time. To strike a balance among them, we propose the Training-Time-Friendly Network (TTFNet). In this work, we start with light-head, single-stage, and anchor-free designs, which enable fast inference speed. Then, we focus on shortening training time. We notice that encoding more training samples from annotated boxes plays a similar role as increasing batch size, which helps enlarge the learning rate and accelerate the training process. To this end, we introduce a novel approach using Gaussian kernels to encode training samples. Besides, we design the initiative sample weights for better information utilization. Experiments on MS COCO show that our TTFNet has great advantages in balancing training time, inference speed, and accuracy. It has reduced training time by more than seven times compared to previous real-time detectors while maintaining state-of-the-art performances. In addition, our super-fast version of TTFNet-18 and TTFNet-53 can outperform SSD300 and YOLOv3 by less than one-tenth of their training time, respectively. The code has been made available at url{https://github.com/ZJULearning/ttfnet}.
The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time.
In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component. Four edges of a 2D box p
ARTOS is all about creating, tuning, and applying object detection models with just a few clicks. In particular, ARTOS facilitates learning of models for visual object detection by eliminating the burden of having to collect and annotate a large set
Existing RGB-D salient object detection (SOD) approaches concentrate on the cross-modal fusion between the RGB stream and the depth stream. They do not deeply explore the effect of the depth map itself. In this work, we design a single stream network
Autonomous vehicles (AVs) can achieve the desired results within a short duration by offloading tasks even requiring high computational power (e.g., object detection (OD)) to edge clouds. However, although edge clouds are exploited, real-time OD cann