ترغب بنشر مسار تعليمي؟ اضغط هنا

Geoscience for understanding habitability in the solar system and beyond

48   0   0.0 ( 0 )
 نشر من قبل Vera Dobos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body. We address some hotly debated questions including: - How do core and mantle affect the evolution and habitability of planets? - What are the consequences of mantle overturn on the evolution of the interior and atmosphere? - What is the role of the global carbon and water cycles? - What influence do comet and asteroid impacts exert on the evolution of the planet? - How does life interact with the evolution of the Earths geosphere and atmosphere? - How can knowledge of the solar system geophysics and habitability be applied to exoplanets? In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.

قيم البحث

اقرأ أيضاً

There is a vibrant and effective planetary science community in Canada. We do research in the areas of meteoritics, asteroid and trans-Neptunian object orbits and compositions, and space weather, and are involved in space probe missions to study plan etary surfaces and interiors. For Canadian planetary scientists to deliver the highest scientific impact possible, we have several recommendations. Our top recommendation is to join LSST and gain access to the full data releases by hosting a data centre, which could be done by adding to the CADC, which is already highly involved in hosting planetary data and supporting computational modelling for orbital studies. We also support MSE, which can provide spectroscopy and thus compositional information for thousands of small bodies. We support a Canadian-led microsatellite, POEP, which will provide small body sizes by measuring occultations. We support the idea of piggybacking space weather instruments on other astronomical space probes to provide data for the space weather community. Many Canadian planetary scientists are involved in space probe missions, but through haphazard and temporary arrangements like co-appointments at US institutions, so we would like the community to support Canadian researchers to participate in these large, international missions.
For the first time in human history, we will soon be able to apply the scientific method to the question Are We Alone? The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search for life beyond our Solar System through direct observation of extrasolar planets. This endeavor will occur alongside searches for habitable environments and signs of life within our Solar System. While the searches are thematically related and will inform each other, they will require separate observational techniques. The search for life on exoplanets holds potential through the great diversity of worlds to be explored beyond our Solar System. However, there are also unique challenges related to the relatively limited data this search will obtain on any individual world. This white paper reviews the scientific communitys ability to use data from future telescopes to search for life on exoplanets. This material summarizes products from the Exoplanet Biosignatures Workshop Without Walls (EBWWW). The EBWWW was constituted by a series of online and in person activities, with participation from the international exoplanet and astrobiology communities, to assess state of the science and future research needs for the remote detection of life on planets outside our Solar System.
The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA s cience disciplines (planetary science, heliophysics, Earth science) with ongoing exoplanet research in astrophysics. The NASA Nexus for Exoplanet System Science (NExSS) provides a forum for scientists to collaborate across disciplines to accelerate progress in the search for life elsewhere. Here we describe recent developments in these other disciplines, with a focus on exoplanet properties and environments, and the prospects for future progress that will be achieved by integrating emerging knowledge from astrophysics with insights from these fields.
The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently, two further planet candidates have been claimed, one of them in the habitable zone. In view of the ongoing search for planets around M stars which is expected to result in numerous detections of potentially habitable Super-Earths, we take the GL 581 system as an example to investigate such planets. In contrast to previous studies of habitability in the GL 581 system, we use a consistent atmospheric model to assess surface conditions and habitability. Furthermore, we perform detailed atmospheric simulations for a much larger subset of potential planetary and atmospheric scenarios than previously considered. A 1D radiative-convective atmosphere model is used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. In these calculations, key parameters such as surface pressure and CO2 concentration as well as orbital distance and planetary mass are varied. Results imply that surface temperatures above freezing could be obtained, independent of the here considered atmospheric scenarios, at an orbital distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations as low as 10 times the present Earths value are sufficient to warm the surface above the freezing point of water. At 0.175 AU, only scenarios with CO2 concentrations of 5% and 95% were found to be habitable. Hence, an additional Super-Earth planet in the GL 581 system in the previously determined dynamical stability range would be considered a potentially habitable planet.
We present the first investigation of Th abundances in Solar twins and analogues to understand the possible range of this radioactive element and its effect on rocky planet interior dynamics and potential habitability. The abundances of the radioacti ve elements Th and U are key components of a planets energy budget, making up 30% to 50% of the Earths (Korenaga 2008; All`egre et al. 2001; Schubert et al. 1980; Lyubetskaya & Korenaga 2007; The KamLAND Collaboration 2011; Huang et al. 2013). Radiogenic heat drives interior mantle convection and surface plate tectonics, which sustains a deep carbon and water cycle and thereby aides in creating Earths habitable surface. Unlike other heat sources that are dependent on the planets specific formation history, the radiogenic heat budget is directly related to the mantle concentration of these nuclides. As a refractory element, the stellar abundance of Th is faithfully reflected in the terrestrial planets concentration. We find that log eps Th varies from 59% to 251% that of Solar, suggesting extrasolar planetary systems may possess a greater energy budget with which to support surface to interior dynamics and thus increase their likelihood to be habitable compared to our Solar System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا